An empirical explanation of color contrast

R. Beau Lotto* and Dale Purves

Duke University Medical Center, Box 3209, Durham, NC 27710

Contributed by Dale Purves, August 7, 2000

For reasons not well understood, the color of a surface can appear quite different when placed in different chromatic surrounds. Here we explore the possibility that these color contrast effects are generated according to what the same or similar stimuli have turned out to signify in the past about the physical relationships between reflectance, illumination, and the spectral returns they produce. This hypothesis was evaluated by (i) comparing the physical relationships of reflectances, illuminants, and spectral returns with the perceptual phenomenology of color contrast and (ii) testing whether perceptions of color contrast are predictably changed by altering the probabilities of the possible sources of the stimulus. The results we describe are consistent with a wholly empirical explanation of color contrast effects.

A central problem throughout the history of attempts to understand color vision has been the relationship between the spectral content of light returned to the eye from a visual target and the color sensation elicited. A fact that has been particularly difficult to rationalize is that the same spectral stimulus can appear to be differently colored when viewed against different chromatic backgrounds (1–8). Thus, an object’s color is somehow determined by the spectral characteristics of the scene in which it appears (Fig. 1).

These contextual effects, generally referred to as simultaneous color contrast or chromatic induction, present a challenge to theories of color vision. Most textbook accounts present color contrast as an incidental consequence of mechanisms that allow the spectral return from a surface to generate similar color sensations under different illuminants (i.e., color constancy; see, for example, ref. 9, pp. 119–120). The neural circuitry thought to underlie these anomalous effects is either lateral interactions among chromatically sensitive neurons at the input stages of the visual system (6, 10–16) or neuronal interactions promoting a more general adaptation of the color-processing system to the predominant spectral return (and/or spectral contrasts) in the scene (12, 14, 16–23). Despite the ability of these interpretations to predict some aspects of color contrast, other investigators have found such explanations to be unsatisfactory (see refs. 24–27).

Given the ongoing uncertainty about the explanation of color contrast effects—and indeed about color sensation generally—we here examine an alternative theory, namely that perceptions of color represent the accumulated experience of the species and the observer with the reflectances and illuminants that generated the same or similar spectral profiles in the past.

Experimental Methods

Construction and Presentation of Computer Graphics. All test stimuli were created with a Power Macintosh G3 computer, using Adobe PHOTOSHOP 5.0 software and the standard Macintosh 32-bit true color palette. The stimuli were displayed on a calibrated 48-cm (diagonal) color monitor (Sony Multiscan 300sf; monitor resolution 1024 × 768; scan rate 75 Hz; noninterlaced). The computer interface for each test routine was created with DIRECTOR 6.0 (Macromedia, San Francisco, CA).

The luminances of computer-generated colors were measured photometrically with an optical power meter (model 371R; Graseby Optronics, Orlando, FL) under the relevant test conditions (values are given below); the average spectral content of the stimuli was determined by calculating the average activation of the red (R), green (G), and blue (B) guns. The colors of the surrounds used in the experiments reported in Fig. 3B correspond to Munsell hue red (5R), orange (5YR), yellow (5Y), yellow/green (5GY), green (5G), cyan (5BG), blue (5B), purple/blue (5PB), purple (5P), or red/purple (5RP), each at three levels of chromaticity (chroma 3, 6, and 9) and at 41 cd/m². The colors of the targets correspond to Munsell hue red (5R), yellow (5Y), green (5G), or blue (5B), presented with a chroma of 6 and a luminance of 28 cd/m².

Subjects and Testing Procedures. Subjects with normal or corrected acuity of 20/20 or better and normal trichromatic vision observed the test stimuli on the monitor screen from a distance of 60 cm in an otherwise darkened room after adaptation to the ambient light (approximately 0.5 cd/m²). The dimensions of the targets were 1° × 1° for the stimuli used to determine color contrast effects (see Fig. 3B) and 1.75° × 1.75° in the more complex scenes (see Fig. 5). Before testing, each subject was adapted to the testing conditions for 5 min. The task for the experiments described in Fig. 3B was to adjust the perceived hue, saturation, and brightness of the right target on the achromatic surround until it matched the color of the left target on the chromatic surround, using a series of “buttons” at the bottom of the scene. Similarly, for the experiments described in Fig. 5, subjects adjusted the hue, saturation, and brightness of the “adjusted targets” until they matched the color of their corresponding “test target” in the scene. Adjustments in perceived hue, saturation, and brightness were generated by changing the relative output of the red, green, and blue guns of the monitor. When the colors of the two targets appeared identical (or as similar as it was possible to make them), the subjects clicked the “match” button, which recorded the hue, saturation, and brightness values of the adjusted target for subsequent analysis, and called up the next scene. Subjects repeated each test twice for the experiments in Figs. 3B and three times for the experiments reported in Fig. 5. The values in hue–saturation–brightness computer color space for each condition were averaged and compared (see Results). Statistically significant differences in the experiments described in Fig. 5 were determined by Student’s t test.

Results

Rules Describing the Interaction of Reflectances, Illuminants, and Spectral Returns. If color contrast effects such as those in Fig. 1 do indeed arise from human experience with the typical sources of spectral stimuli, then the phenomenology of these perceptions should always accord with the rules that describe the physical interaction between reflectances, illuminants, and spectral re-

*To whom reprint requests should be addressed. E-mail: lotto@neuro.duke.edu.

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Article published online before print: Proc. Natl. Acad. Sci. USA, 10.1073/pnas.210369597. Article and publication date are at www.pnas.org/cgi/doi/10.1073/pnas.210369597
The narrower the distribution of power in the illuminant relative to the variance ("purity") of the spectral distribution of the illuminant: under neutral illumination, the return shifting along the same axis in Fig. 2, all of these effects are influenced by the variance ("purity") of the spectral distribution of the illuminant: the narrower the distribution of power in the illuminant relative to the reflectance efficiency function of the surface, the greater are all of the effects described above.

These several rules thus describe the way in which spectral returns from any surfaces are affected by different illuminants. If, as we hypothesize, spectral stimuli elicit percepts as a result of visual experience with the typical provenance of spectral returns, then when someone is presented with any chromatic combination in a color contrast stimulus, the colors perceived should accord with the rules of these physical relationships.

Rules Describing Perceptions of Color Contrast. To explore whether the colors perceived in response to stimuli such as those shown in Fig. 1 are predicted by the physical relationships illustrated in Fig. 3A, a series of chromatic test targets were presented to subjects on differently chromatic surrounds (see diagram in Fig. 3B Top) (as described in Experimental Methods, the spectral returns of both the target and background were selected to elicit a color sensations that ranged broadly over perceptual color space). By having subjects adjust the perceived hue, saturation, and brightness of a target on an achromatic background until its apparent color matched that of a physically identical target on an isoluminant, chromatic background, we could measure the change induced in the color of the target by the chromatic surround.

The results of these tests are shown in Fig. 3B (i–3) and can be summarized as follows.

(i) When a target is presented on a chromatic background whose spectral return is similar to that of the target, the apparent color of the target relative to its appearance on a neutral surround decreases in saturation and brightness, with little change in hue.
when the test target is presented on a chromatic background whose spectral return is neither the same as nor complementary to that of the target, the hue of the target relative to its appearance on a neutral surround changes maximally (i.e., away from the hue of the surround), with little change in saturation and brightness.

Finally, as indicated by the three curves in each of 1–3 in Fig. 3B, these contextual effects on hue, saturation, and brightness are all enhanced by decreasing the variance of the spectrum of the chromatic surround.

Notice that these observed changes in the perception of hue, saturation and brightness of a target in different chromatic surrounds are in each instance complementary to the way spectral returns from surfaces change under different chromatic illuminants (compare Fig. 3A and B).

An Empirical Explanation of Color Contrast Effects. Although the results shown in Fig. 3 do not rule out explanations of color contrast based on lateral interactions between chromatically sensitive neurons, the complementary relationship between perceptions of color contrast and the physical behavior of reflectance, illumination, and spectral returns summarized in Fig. 3 suggests an alternative explanation. Rather than being an incidental consequence of receptive field properties, this relationship is what would be expected if color contrast phenomena were generated empirically by the past significance of spectral stimuli. Consider, for example, the color contrast effects elicited by the stimuli in Fig. 1. In empirical terms, because the average spectral profile of a scene is always shifted toward the spectrum of the illuminant (see Fig. 3A), the return from the surrounds in Fig. 1 increases the probability that the target returns are different from those that would be generated by the same reflectances under different illuminants, as illustrated in Fig. 4. Given this probable difference in illumination, the underlying sources of the identical returns from the two targets would have been differently reflective surfaces. For instance, under this implied illuminant, the return from the left target in Fig. 1 could only have been generated by a surface that would appear orange in white light, and the return from the right target in Fig. 1 could only have been generated by a surface that would appear orange in white light (Fig. 4). As a result of this past experience with the underlying sources of the identical returns from the two targets illustrated in Fig. 4, given this probable difference in illumination, the underlying sources of the identical returns from the two targets would have been differently reflective surfaces. For instance, under this implied illuminant, the return from the left target in Fig. 1 could only have been generated by a surface that would appear orange in white light, and the return from the right target in Fig. 1 could only have been generated by a surface that would appear orange in white light. As a result of this past experience with the underlying sources of the identical returns from the two targets illustrated in Fig. 4, given this probable difference in illumination, the underlying sources of the identical returns from the two targets would have been differently reflective surfaces. For instance, under this implied illuminant, the return from the left target in Fig. 1 could only have been generated by a surface that would appear orange in white light, and the return from the right target in Fig. 1 could only have been generated by a surface that would appear orange in white light (Fig. 4). As a result of this past experience with the underlying sources of the identical returns from the two targets illustrated in Fig. 4, given this probable difference in illumination, the underlying sources of the identical returns from the two targets would have been differently reflective surfaces. For instance, under this implied illuminant, the return from the left target in Fig. 1 could only have been generated by a surface that would appear orange in white light, and the return from the right target in Fig. 1 could only have been generated by a surface that would appear orange in white light. As a result of this past experience with the underlying sources of the identical returns from the two targets illustrated in Fig. 4, given this probable difference in illumination, the underlying sources of the identical returns from the two targets would have been differently reflective surfaces. For instance, under this implied illuminant, the return from the left target in Fig. 1 could only have been generated by a surface that would appear orange in white light, and the return from the right target in Fig. 1 could only have been generated by a surface that would appear orange in white light. As a result of this past experience with the underlying sources of the identical returns from the two targets illustrated in Fig. 4, given this probable difference in illumination, the underlying sources of the identical returns from the two targets would have been differently reflective surfaces. For instance, under this implied illuminant, the return from the left target in Fig. 1 could only have been generated by a surface that would appear orange in white light, and the return from the right target in Fig. 1 could only have been generated by a surface that would appear orange in white light.

(ii) When the test target is presented on a chromatic background whose spectral return is complementary to that of the target, the apparent color of the target relative to its appearance on a neutral surround increases in saturation and brightness, with little change in hue.

(iii) When the test target is presented on a chromatic background whose spectral return is neither the same as nor complementary to that of the target, the hue of the target relative to its appearance on a neutral surround changes maximally (i.e., away from the hue of the surround), with little change in saturation and brightness.

(iv) Finally, as indicated by the three curves in each of 1–3 in Fig. 3B, these contextual effects on hue, saturation, and brightness are all enhanced by decreasing the variance of the spectrum of the chromatic surround.

Notice that these observed changes in the perception of hue, saturation and brightness of a target in different chromatic surrounds are in each instance complementary to the way spectral returns from surfaces change under different chromatic illuminants (compare Fig. 3A and B).
As shown in Fig. 3B, this is, in fact, what occurs when targets are placed on different chromatic backgrounds.

The Effects of Altering the Empirical Significance of Color Contrast Stimuli. If this explanation of color contrast is correct, then the perceived color of the target in a stimulus should change in a predictable manner as the spectral characteristics of the returns from the scene are manipulated so as to make the stimulus more or less consistent with different combinations of reflectances and illuminants. Moreover, this effect should be apparent, even if the spatial chromatic average of the stimulus is unchanged.

Increasing the probability that identical target returns arise from different conditions of chromatic illumination increases perceived color differences. We therefore examined the responses of subjects to additional stimuli in which the empirical significance of the targets was changed by manipulating the characteristics of their surroundings while keeping the average spectral returns from the scenes the same. In the stimuli shown in Fig. 5A and B, for instance, subjects were asked to report the apparent color difference between identical chromatic targets embedded in uniformly colored (Fig. 5A) or multicolored (Fig. 5B) surrounds. The perceived differences in the qualities of the target color in these two circumstances were measured by having the observers adjust the apparent hue, saturation, and brightness of the same targets set against a uniform gray surround in the two test boxes beneath the scene until the differences between them matched the perceived differences between the two targets in the color contrast stimuli. The rationale for this comparison was that increasing the number of different spectral returns consistent with the two identical targets being differently illuminated should increase the probability of the target returns being generated by differently reflective surfaces. As a result, the perceived color difference of the targets should increase, in keeping with this change in the probable significance of the stimulus.

When subjects were presented with the scene in Fig. 5A, a relatively modest adjustment was required to match the two targets, the direction of the adjustment being that expected from the empirical information in the surround about the possible underlying sources of the stimulus (see Fig. 5D). When, however, the subjects were presented with the multicolored backgrounds in Fig. 5B (which have the same average spectral content as the corresponding surrounds in Fig. 5A), the color difference between the two targets (mostly hue) was perceived to be more than twice as great (see Fig. 5D). Relative to the stimulus in Fig. 5A, the additional spectral information in Fig. 5B makes the left and right panels more consistent with the past experience of red and blue illumination, respectively.

Decreasing the probability that identical returns arise from different conditions of chromatic illumination decreases perceived color differences. If the perceived color difference of two identical targets is increased by a constellation of spectral returns consistent with the targets being under different chromatic illuminants, then spectral information surrounding the targets that is inconsistent with this experience should decrease the color differences of the targets.

To test this prediction, subjects were presented with the stimuli in Fig. 5C. In this case, the constellation of spectral returns was chosen so that the left and right panels were less likely to be under “red” and “blue” illumination than those in Fig. 5B. Thus, the spectra of the “red” squares in the left array were shifted to the left (toward the central part of the spectrum), and their variance in y was decreased (i.e., the bandwidth of the distribution was broadened), whereas the variance of the “yellow” and “green” squares was increased (i.e., the bandwidths of the distributions were narrowed) and their spectral power was increased. These changes are inconsistent with the past experience of the visual system with “red” illumination, which would have decreased the luminance and broadened the distributions of the returns from “green” and “yellow” squares, at the same time narrowing the distribution of the returns from “red” squares (see Fig. 3A). Similarly, the right array in Fig. 5C was made less consistent with a “blue” illuminant by both increasing the luminance and narrowing the distribution from the “yellow” and “orange” squares and decreasing the luminance of the “blue” squares. Again, both changes are opposite the spectral
differences that would be generated if the array were under a “blue” illuminant.

As a result of these manipulations, perceptions of target hue, saturation, and brightness were more similar in response to the stimuli in Fig. 5C than to those in Fig. 5B (see Fig. 5D). Indeed, the targets appeared more similar in Fig. 5C than when presented on the uniform surrounds in Fig. 5A, showing that the perceptual differences in response to the stimuli in Fig. 5A and B do not arise from structural differences in the complexity of the surrounds. Nor can these results be explained by differences in the spectral profile of the stimulus, because the spatial chromatic average is the same in Fig. 5A–C. Finally, the reduction in color contrast in Fig. 5C cannot be attributed to the increased saturation of the red and blue grid immediately surrounding the targets because, according to conventional theories of color contrast, such a change should have increased, not decreased, the effects of color contrast.

Thus in each of these challenges, the perceived colors of the targets changed according to whether the stimulus was more consistent with the targets being differently reflective objects under different illuminants or similarly reflective objects under similar illuminants.

Discussion

The spectral composition of visual stimuli is determined by both the reflectance of objects and their illumination (as well as a host of other more subtle factors not considered in this study). Consequently, the underlying sources of the light that interacts with retinal receptors are inevitably ambiguous. Successful behavioral responses to spectral stimuli nonetheless depend on a proper evaluation of the relative contributions to the stimulus of reflectance and illumination: the response will be inappropriate if the contribution from illumination is mistaken for the contribution of surface reflectances, or vice versa. Because an observer cannot determine these relative values from the stimulus as such, we have proposed that the visual system resolves this dilemma by seeing colors wholly according to the past significance of spectral returns (8, 29). The present study has sought to extend this general hypothesis of visual perception to the perception of color contrast.

To this end, we first determined the physical relationships between reflectances, illuminants, and spectral returns and compared these relationships with the effects of placing targets in a range of different chromatic contexts (Fig. 3). The complementary relationship between the physical rules governing reflectance, illumination, and the resulting spectral returns and the perceptual phenomenology of color contrast supports the conclusion that color contrast effects are an empirical consequence of the way the spectral returns from surfaces change with illumination. Consistent with this conclusion, changing the empirical significance of identical targets alters the perception of color contrast in the expected directions. To the extent that a color contrast stimulus was consistent with the returns from the targets arising from differently reflective objects under different illuminants, the perceived difference in color between two identical targets increased (compare Fig. 5A and B). Conversely, to the extent that a color contrast stimulus was inconsistent with this possibility (and therefore more consistent with the source being similarly reflective surfaces under similar illuminants), the difference in target color was decreased (cf. Fig. 5B and C). These different perceptions of identical targets in stimuli with the same average chromatic values suggest that “illusions” of color contrast are based on past experience. If color contrast were a consequence of (i) lateral interactions between chromatically sensitive neurons, (ii) the adaptation of retinal receptors to the predominant wavelengths surrounded the targets, or (iii) chromatic ratios across contrast boundaries in the scene, the

![Fig. 6. The similar empirical basis of color contrast (A) and constancy (B).](Image)

Although the spectral returns from the central squares (indicated by the black dots) are identical, they elicit different sensations of color because the stimuli increase the probability that the two returns originate from differently reflective surfaces under different illuminants. (B) When, however, the spectral information in the scene increases the probability that the returns from the targets originate from similarly reflective surfaces under similar illumination, the central squares (indicated by black dots) elicit relatively similar sensations of color. Thus, despite the fact that the spatial average of the return from the discs surrounding the targets is the same in A and B, the color of two targets appears either different (color contrast) or similar (color constancy), according to the empirical significance of the stimuli.
more consistent with the underlying sources of the returns from two targets being similarly reflective surfaces under similar illuminants (as is the case for the central squares of the discs in Fig. 6B, indicated by black dots), then the perceptual response elicited will be the same or a more similar color (i.e., color constancy). Thus, the distinction between color constancy and color contrast in terms of two targets returning different spectra to the eye (but appearing the same) or similar spectra to the eye (but appearing different) is meaningless. What distinguishes constancy from contrast is simply the similarity or difference of the empirical significance of the targets in the stimulus, not their physical attributes. When considered in these empirical terms, color constancy and contrast are simply manifestations of the same probabilistic strategy for generating perceptions of color.

Conclusion

This same general argument (and much evidence) has recently been invoked to explain other aspects of visual perception, including simultaneous brightness contrast (31, 32), the effects of color on brightness (8), Mach bands (33, 34), the filling in associated with Cornsweet edges (35), the Chubb illusion (36), and the perception of oriented lines (37). In each case, the perceived visual qualities appear to be manifestations of what the stimuli have typically turned out to be. With respect to color, this strategy implies that perception will always accord with the frequency of the underlying stimulus sources, and that manipulating chromatic stimuli will change the colors perceived in a manner predicted by the empirical significance of the altered stimuli.

We are grateful to Mark Changizi for his participation in the color matching experiments; to Sid Simon for technical advice; and to Mark Changizi, David Fitzpatrick, Surajit Nundy, Tom Polger, and Zhichong Yang for helpful criticisms. This work was supported by the National Institutes of Health (NS29187).