Figure 1. **Top Panel:** Psychometric function for yes-no identification for subject MR. **Middle Panel:** Psychometric function for n-localization for subject MR. **Bottom Panel:** Threshold-vs-Set Size graph for subject MR.
Figure 2. Data from Experiment 1
Figure 3. Signal Detection Theory explanation of set size effects for yes-no identification. **Top Panel:** For set size 2, a target absent trial has two opportunities to produce a false alarm. **Bottom Panel:** For set size 8, a target absent trial has eight opportunities to produce a false alarm. The net result is reduced performance for set size 8. This noisy integration process produces a predicted log-log slope of the threshold-vs-set size graph of .xx.
Figure 4. Signal Detection Theory explanation of set size effects for the n-localization task.

Left Panel: For set size 2, the target and distractor distributions show only modest overlap.

Right Panel: For set size 8, the maximum of the seven distractors now overlaps the target distribution a great deal, which leads to more errors and thus an increased threshold. This noisy integration process produces a predicted log-log slope of the threshold-vs-set size graph of .xx.
Figure 5. Data from Experiment 1, graphed against the predictions of the signal detection model.
Figure 6. Data from Experiment 2

Graphs showing intuitions for 2-target case (as with yes-no and n-localization models)?
Figure 7. Data from Experiments 1 and 2, graphed against the predictions of the signal detection models.
Figure 8. Data from Experiment 3, collapsed across different combinations of spatial frequency, temporal frequency and contrast levels.
Figure 9. Data from Experiment 4. The cueing condition always presents 8 stimuli, but pre-cues the two relevant locations in set size 2.
Figure 10. Data from Experiment 5.
Figure 11. Data from Experiments 1-5, graphed against the predictions for the relevant signal detection model. The models capture the ordering of the tasks, as shown by the best fitting regression line, but miss quantitatively, as shown by the fact that all points are above the line of best prediction (oblique line).
Figure 12. Mislocalization data from Experiment 1 and Experiment 2.
Figure 13. Comparison of Spatial Independence models and predictions of the assimilation model.