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Abstract 

Two experiments explore the role that spatial format has on 
arithmetic computations. In printed arithmetic expressions 
containing both multiplications and additions, terms that are 
multiplied are often placed closer together than terms that are 
added. These experiments test whether that external tendency 
plays a role in how reasoners construct interpretations of 
simple compound arithmetic expressions (such as “2 + 3*4”). 
Evidence is found to support two such influences: First, 
reasoners use spacing information when choosing an 
operation to apply (e.g., whether to add or to multiply two 
numbers). Second, reasoners also use spacing patterns to 
select an order in which to apply operations in compound 
expressions. Terms placed closer together tend to be 
computed sooner. Although spatial relationships besides order 
are entirely formally irrelevant to expression semantics, 
reasoners use these regular spatial relationships to support 
their success with various formal properties. 

Keywords: symbolic processing, mathematics, embodied 
cognition, relational reasoning 

Introduction 
One of the central challenges facing the cognitive study of 
mathematical reasoning is symbolic interpretation: how do 
people use symbol strings as carriers of meanings? In the 
domain of mathematics, formal rules specify how terms are 
supposed to be interpreted. Despite the simplicity and 
explicitness of these rules, numerous studies have noted that 
difficulties generating solutions from mathematical 
expressions often result from failures to correctly read and 
understand symbolic notation (Koedinger & MacLaren, 
1997; Koedinger & Nathan, 2004; Sfard & Linchevski, 
1994). Understanding and predicting such difficulties 
requires that cognitive scientists learn more about how 
reasoners process formal notational  systems. 

Cognitive conceptions of abstract formal interpretation 
generally follow formal logics by assuming that reasoners 
explicitly represent rules of combination, and apply those 
rules to symbolic expressions (Fodor, 1975; Marcus, 2001). 
In this view, the role of perception is to identify and 
represent for internal consumption individual symbols 
written in the external notation. Problems that involve more, 
or more difficult, rules are predicted to be harder to solve, 
but perceptual factors should only affect the transcription of 
the external notation into internal symbols. 

In addition to their formal properties, commonly used 
symbol systems have many informal properties as well: 
pairs of symbols may be similar or dissimilar, or one symbol 

may be larger or more salient than another, or bear other 
non-formal but readily accessible features and relations. 
Although these properties are not formally meaningful, it is 
quite likely that reasoners are sensitive to such regularities, 
and use them to build successful interpretations. 

The major goal of this paper is to explore the role that 
one such property—physical spacing—plays in simple 
arithmetic computations. Arithmetic equations are often 
non-uniformly laid out on a page. For instance, in 
mathematical typesets and typesetting programs such as 
LaTeX, multiplications are automatically spaced more 
closely than additions.  Handwritten expressions are more 
variable in their appearance, but our data suggests that this 
spacing regularity also exists in handwritten expressions 
(Landy & Goldstone, In Press A).  

In this paper we explore three hypotheses about how 
reasoners might use regular addition and multiplication 
spacing in building arithmetic interpretations. According to 
the operator feature hypothesis, participants might be 
sensitive to the relational spacing regularities of various 
operators when they identify operator type. If an operator is 
widely spaced in a particular expression, therefore, it is 
assumed to be more likely an addition than a multiplication. 
This assumption may lead to people interpreting 2+4 * 7 to 
equal 56, if they interpret the “+” as a “*” because the close 
spacing leads them to perform the calculation involving the 
“2” and “4” before the calculation involving “4” and “7.”  

The proximity-precedence alignment hypothesis 
proposes that people will be sensitive to the visual hierarchy 
of perceptual groups present in an equation, and that this 
sensitivity will cause closer objects to be combined first 
(Kirshner, 1989; Kirshner & Awtry, 2004). Thus, the 
expression 2+4 * 7 is likely to be interpreted as 42, rather 
than (the formally correct) 30, because the spatial proximity 
of the threes will incline perceivers to group them formally. 
In this paper, we will refer to expressions as consistent if 
higher-precedence operations are more closely spaced, 
inconsistent if higher-order operations are more widely 
spaced, and neutral if evenly spaced.  

Finally, because equations are typically read from left to 
right, we expect that expressions with products placed to the 
left of sums will be easier to solve (the expression reading 
hypothesis). These hypotheses will be measured against a 
null hypothesis of no effect of physical layout, which 
although not essential to any particular theory, has generally 
served as a default view in discussions of symbolic 
reasoning (e.g., Anderson, 2005; Stenning, 2002). 



The first two hypotheses predict that arithmetic problems 
which violate the normal spatial relationships will be more 
difficult generally, but they predict different specific error 
patterns: the operator-feature hypothesis predicts that 
reasoners will make operator confusions, while the 
operation-order hypotheses predicts that reasoners will tend 
to apply the correct operations, but in the wrong order. In 
the following two experiments, college undergraduates were 
asked to compute values for simple expressions with various 
physical spacings. The solutions and solution times 
produced were used to evaluate these hypotheses. 

Studies measuring performance on single-operator 
problems (see Ashcraft, 1992) typically measure values for 
the entire range of problems with operators from around 0-
9; these small-value problems are heavily studied in school, 
and solutions have often been memorized. In order to 
evaluate operation order behavior, two-operator problems 
are, of course, necessary. However, there are many low-
operand two-value problems; the goal of these experiments 
is to sample this range. Experiment 1 explores the effects of 
spacing on very low-operand problems, while Experiment 2 
measures the impact of spacing on problems with a mixture 
of sizes. 

Experiment 1 

Procedure 
55 Indiana University undergraduates participated in this 

experiment in exchange for partial course credit. 
Participants were seated in front of a computer, and shown 
simple arithmetic problems. Participants solved problems, 
and typed their responses into the computer keyboard. 
Response times were collected from the first key-press.  

After a brief warm-up of single-operator problems, 
participants solved a set of 216 expressions. Each 
expression contained two operations, which could be either 
additions or multiplications. Every participant solved every 
combination of these operations over the operands 2, 3, and 
4, except problems with all three operands identical (errors 
on such problems are difficult to analyze), a total of three 
times, once in each of three spacing conditions. These 
conditions differed in their physical layout: in the narrow-
first condition, the left-hand terms were spaced more closely 
than those on the right, as in “2+3 * 4”. In the wide-first 
condition, the left-hand terms were spaced more widely, as 
in “2 + 3*4”. Finally, in the even condition, both operators 
were identically and intermediately spaced. The four 
operator structures tested are called plus-plus, times-plus, 
plus-times, and times-times, and are of the forms a+b+c, 
a*b+c, a+b*c and a*b*c, respectively. Problems were 
presented to each participant in a unique random order. In 
pre-experiment instructions, participants were asked to 
perform their calculations quickly, but the problems were 
self-paced. Each remained on the screen until the participant 
completed a response by pressing the return key. 
Participants were reminded of the order of operations rule, 
and given an example of its application in the instructions.   

Results 
Three participants failed to reach a criterion of 70% mean 

accuracy, and were eliminated from analysis, leaving 52 
participants whose data were analyzed. 

The expression reading and proximity-precedence 
alignment hypotheses make predictions about overall 
problem difficulty (measured by accuracy and correct-trial 
response time (RT)); the operation feature hypothesis makes 
predictions only about particular kinds of errors.  

Half of all trials (the plus-plus and times-times trials) 
contained only one type of operator, and consequently have 
no formally defined order or consistency; these trials are not 
relevant to the proximity-precedence alignment hypothesis 
or the expression reading hypothesis, and so these trials are 
excluded from the analysis of overall RT and accuracy.   
 
Response Time Spacing and operation order affected 
correct-trial response time. Figure 1 presents the mean RT 
for each problem condition. The left-hand bars reflect 
response times on times-plus stimuli, the right on plus-
times. We analyzed overall RT on these trials with a 2-way 
2x3 ANOVA using operator structure and spacing as 
independent categorical variables. In this coding, spatial-
operator consistency appears as an interaction. As predicted 
by proximity-precedence hypothesis, this interaction was 
significant (MSE=30.8, F(2,96)=31.6, p<0.0001).  For 
problems in the times-plus order, wide-first problems took 
longer than other types; for problems in the plus-times order 
wide-first problems were fastest. Problems in the times-plus 
operator format took less time to solve overall than plus-
times problems (MSE=9.96, F(1,49)=7.5, p<0.01), as 
predicted by the expression reading hypothesis. 
 
Accuracy In general, accuracy results match those found in 
RT, indicating that differences do not result from a speed-
accuracy tradeoff. Figure 2 presents overall accuracies. 

According to a 2-way 2x3 ANOVA, spacing and 
operation order interacted significantly (MSE=5.1, 
F(2,102)=8.97, p<0.001).  Examination of the means 
revealed that, as predicted by the proximity-precedence  
alignment hypothesis, consistent problems were solved 
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Figure 1:  Mean response times (RT) in Experiment 1. 
Errors in this, and all following graphs are between-

participant standard errors.  
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Figure 2:  Mean accuracy in Experiment 1.  

 
more accurately, and inconsistent problems less accurately 
than were evenly spaced problems. 

Operation order also significantly affected accuracy as a 
main effect of the ANOVA analysis (MSE=4.5, 
F(1,51)=7.8, p<0.01), with times-plus problems being 
solved more accurately than plus-times problems, as 
predicted by the expression reading hypothesis.  

 
Errors In total, 971 incorrect responses were recorded. 
Most of these errors uniquely matched one type of the 
following errors: In operator confusion errors, the answer 
given was the correct answer to a problem which 
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of all responses), for each operator.  
 

differed from the stimulus only in its operators. For 
instance, a response of “18” to the stimulus “3+2*3” was 
categorized as an operator confusion error.  

Incorrect responses which were correct solutions to a 
problem with one operand different by exactly one from the 
actual stimulus were called operand errors. Thus, for the 
stimulus “2*3*3,” the response “27” was labeled an operand 
error, since it is the correct solution to the problem “3*3*3.”  

Precedence errors occur when the result was compatible 
with performing the correct operations on the correct 
numbers, but in the wrong order. A response of “20” to the 
stimulus “3+2*4” would be coded as a precedence error, 
since (3 + 2) * 4  =  20.  

549 of all errors could be uniquely classified into one of 
these three types. Of the remainder, most were 
typographical errors, or fit into more than one of the three 
primary categories. In what follows, we only analyze the 
uniquely classifiable errors. 

The proximity-precedence alignment hypothesis predicts 
an impact of spatial consistency specifically on precedence 
errors.  To evaluate this prediction, operand and precedence 
errors were analyzed together, using a repeated measures 
analysis, in which the two measures were the per-individual 
rate of each type of error. This measure was used in a 2-way 
ANOVA using error frequency as the dependent measure, 
with error type and item consistency as factors. There was a 
significant main effect of consistency, with more errors on 
inconsistent, and fewer on consistent trials (MSE=61.3, 
F(1,51)=9.2, p<0.01). The interaction term was also 
significant: consistency had a larger effect on precedence 
than on operand errors (MSE=43.7, F(1,51)=5.1, p<0.05). 

The operator feature hypothesis predicts not just an 
increase in errors due to inconsistent spacing, but that 
relative spacing will specifically affect individual operator 
identification. To evaluate the operator feature hypothesis, 
the data were recoded by individual operations, and the 
effective operator was determined for each correct response 
and operator error. In the example given earlier, the 
effective operations on the right and left would both be 
coded as times, because the result (18) is consistent with 
multiplying 3*2*3. The operator feature hypothesis predicts 
that more widely spaced operations will be more likely to be 
treated as additions. The expression reading hypothesis 
predicts that problems on the right-hand side are more likely 
to be treated as additions.  

Figure 3 presents the proportion of trials for which 
responses were operator confusions, broken down by 
spacing, operator position, and operation. A 3-way ANOVA 
using error rate as the dependent measure, and operation 
(addition or multiplication), operator position (left or right), 
and spacing (narrow, medium, and wide) as factors revealed 
the interaction between spacing and operator predicted by 
the operator feature hypothesis (MSE=1.2, F(2, 102)=18.4, 
p<0.001); operator confusions were more frequent with 
additions on the left and multiplications on the right. The 
expression reading hypothesis predicted an interaction 
between operator and spacing, with more confusions on 



additions when they appeared on the left, and on 
multiplications when they appeared on the right. This 
interaction was significant (MSE=.50, F(1,50)=9.5, p<0.01). 

Discussion 
All three hypotheses were supported in this experiment. 

When operator precedence and spatial proximity conflicted, 
arithmetic computations were substantially more difficult. 
Error analysis indicated that precedence was particularly 
sensitive to consistency. Operands were also more likely to 
be summed when widely spaced, and to be multiplied when 
narrowly spaced, supporting the hypothesis that reasoners 
encode information about operator spacing, and use it to 
interpret either symbols or operations. Finally, all measures 
show a general bias toward the times-plus format: 
participants are faster and more accurate on these problems 
than on plus-times problems, and are more likely to treat an 
operator as a multiplication if it appears on the left. 

Experiment 2 serves as a basic replication of Experiment 
1. The same hypotheses are tested, in largely the same 
format. However, while Experiment 1 used only small-
number problems, Experiment 2 evaluates a range of small- 
and large-number problems. Larger problems are generally 
more difficult than smaller ones (Ashcraft, 1992); this 
increased difficulty might impact the role that spacing plays 
in either operator or order of operations judgments.  

Experiment 2 

Procedure 
38 Indiana University undergraduates participated in this 

experiment for course credit. The experiment design and 
procedure were identical to Experiment 1. Stimuli were 
similar to Experiment 1, but only the times-plus and plus-
times operator structures were included, and evenly spaced 
stimuli were dropped.  The operands used were designed to 
systematically vary operand size, without exceeding the 
number of problems that could be solved in an hour-long 
experiment. The middle operand was always 3 or 4. The 
outer operand could be small (2 or 3) or large (6, 8, or 9).  In 
all, each participant solved 200 problems in a unique 
random order. The experiment took 45 minutes to complete. 

Results 
Eight participants failed to reach a criterion of 70% mean 

accuracy, and were eliminated from analysis, leaving 30 
participants whose data were analyzed.  

The larger of the two outside operands was used as a 
measure of problem size, termed the maximum operand. The 
results were also analyzed separating each operand, and 
separating spacing and operator order, with identical results.  
In this experiment, stimulus consistency was coded and used 
as an independent measure. 

 
Response Time A 2-way ANOVA using correct-trial 

response times as a dependent measure revealed a 
significant role of both consistency and operand size (see 

Figure 4B). Inconsistent trials took longer to solve than 
consistent ones (MSE=53.1, F(1,29)=22.5, p<0.001), and 
large operands yielded slower solutions (MSE=1,208, 
F(1,29)=117, p<0.001). The interaction was not significant 
(MSE=.24, F(1,29)=.26, p>0.6).  

 
Accuracy A 2-way ANOVA over consistency and 
maximum operand revealed main effects of both: accuracy 
was higher on consistent than inconsistent problems 
(MSE=0.3, F(1,29)=4.5, p<0.05, see Figure 4A), and was 
lower on larger operand problems (MSE=4.7, F(1,29)=38.7, 
p<0.0001). Consistency and operand size did not interact 
(MS=0.01, F(1,29)=.13, p>.7). The effect of consistency on 
overall accuracy was slight: mean accuracy was 89.8% on 
consistent trials and 91.2% on inconsistent trials. 
 
Errors Analysis Once again, errors were classified as 
operation errors, operand errors, precedence errors, and 
other errors. These errors made up 43% of all 572 recorded 
errors. Most of the remaining errors fit into more than one of 
the above categories or appeared to be “double errors”, in 
which two errors were made on the same problem; most of 
the rest appeared to be typos. It should be noted that the 
ability to uniquely identify error types increases with the 
magnitude of the operands. For instance, 10 was a common 
response for the smallest problem tested, 2+3*2. This could 
result from an precedence error, because (2+3)*2=5*2=10, 
but it could also result from an operand error, because 
2+4*2=2+8=10 (see Figure 4B and 4C.  Unclassified errors 
are presented in Figure 4D). The same analyses were also 
performed using non-exclusive error categories (with each 
ambiguous error being counted once for each of its possible 
error types, with essentially identical results. 

The impact of problem size on precedence and the order 
of operand errors was analyzed using a 3-way repeated 
measures ANOVA over maximum operand, spatial 
consistency, and the type of error with error frequency as 
the dependent measure. The results are presented in Figure 
4D and 4E. This analysis revealed a main effect of problem 
size (MSE=.04, F(1,29)=27.8, p<0.001), and also showed 
that operand errors were more common overall (MSE=0.07, 
F(1,29)=37.7, p<0.001). Two interactions were also 
significant. First, operand errors were more influenced by 
operand size than were precedence errors (MSE=0.029, 
F(1,29)=19, p<0.001). Second, precedence errors were more 
influenced by consistency than were operand errors 
(MSE=0.004, F(1,29)=4.2, p=0.05). T-tests verified that 
precedence errors were significantly affected by consistency 
(t(29)=-2.28, p<0.05), but that operand errors were not 
(t(29)=0.98, p~0.34).  

Operator errors were analyzed using each operator as a 
separate measurement; these were analyzed using a 3-way 
ANOVA using error rate as the dependent measure. As in 
Experiment 1, operators which were more closely spaced 
were more likely to be treated as multiplications (MSE=.15, 
F(1,29)=4.4, p<0.05).  Operator position did not 
significantly affect the perceived operator (MSE=0.08, 



F(1,29)=2.11, p~0.16). The effects of maximum operand 
and spatial consistency are displayed in Figure 4A. 

Discussion 
Experiment 2 successfully replicates the major findings of 

Experiment 1. Experiment 2 employed a different set of 
stimuli, larger problems, and a different collection of 
spacing and operator structures than Experiment 1, but in 
both cases spatial consistency increased overall accuracy, 
decreased accurate-trial response time, and decreased 
specifically precedence and operation errors. Analysis of 
Experiment 2 verifies both the operation feature hypothesis 
and the precedence hypothesis. 

In general, errors increased with the magnitude of the 
operands, particularly errors associated with retrieving 
values for memorized operations (operation and operand 
errors). Errors relating to the expression structure—
precedence errors, were mediated by spacing, but were 
relatively insensitive to operand size in this study. This is 
significant, since understanding a symbolic expression 
requires correctly determining how the individual symbols 
bind together, even when a value is not actually computed. 
This result suggests that the factor introduced here, 
expression spacing, may mediate that understanding more 
robustly than the sizes of the operands used.  No evidence 
was found in this study favoring the expression reading 
hypothesis—the assumption that participants would tend to 
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compute left to right.  Future research will determine which 
experiment aspects encourage operation order dependencies. 

General discussion 
A pair of studies explored how undergraduates use formally 
irrelevant spatial information to solve compound arithmetic 
expressions involving addition and multiplication. In both 
studies, participants were sensitive to the statistical tendency 
of multiplications to be more closely spaced than additions, 
and demonstrated this sensitivity in several ways. First, 
problems with spacing consistent with the operator structure 
were solved more successfully and more quickly than 
problems in which spacing was neutral, or in which spacing 
mismatched formal structure. Participants tended to 
multiply numbers that were more closely spaced, and add 
those with more space between them. Even when the correct 
operation was performed, spacing impacted the likelihood 
that computations would be performed in the correct order. 
Finally, in one experiment, participants were more 
successful when expressions were written with the higher-
order operation on the left.  

From an algorithmic perspective, it is interesting that 
precedence order was affected by spacing even when the 
correct operations were performed. One might have 
supposed that statistical regularities about spacing would 
impact operator recognition, but that once the terms had 
been correctly identified the rule system would determine 
the correct order (as in Anderson, 2005). It seems instead 
that the processes that infer structure in formal notations are 
also sensitive to those that represent spatial groupings. 
While the effects of spacing presented here are not large in 
absolute magnitude, the task was also extremely simple. On 
less well-learned tasks, in which aligning structure and 
interpretation is more difficult generally, semantic-spatial 
alignment may play a larger role (Landy & Goldstone, in 
press B, considers the case of elementary algebra).  

Because spatial consistency affects precisely those aspects 
of expressions most directly involved in symbolic literacy, 
the interaction between space and formal reasoning has 
methodological implications for practices in the psychology 
of mathematical reasoning as well: Koedinger and Nathan 
(2004), for instance, find that, contrary to the expectations 
of most educators and researchers, some story and word 
problems are easier for high-school students to solve than 
formally equivalent symbolically expressed computations. 
Their interpretation of this is that, like natural languages, 
mathematical formalisms take time and effort to learn, and 
that comprehension errors affect not just story problems but 
also formal arithmetic systems. Although it does not affect 
their main conclusion that learning to read symbolic 
notation is a difficult and lengthy process, it is nonetheless 
telling that their symbolic expressions—which require 
participants to understand and apply order of operations 
rules—all seem to be uniformly spaced, making symbolic 
interpretation more difficult. In general, studies of this sort 
do not report spacing conventions; the physical spacing 
must be inferred from the sample figures, which in this case 

use a uniformly spaced font.  Attending to the role of non-
physical layout could make such results more informative. 

Fundamentally these results challenge the conception that 
human reasoning with formal systems uses only the formal 
properties of symbolic notations, and that errors are driven 
by misunderstandings of those properties. Instead, people 
seem to use whatever regularities—formal or visual, rule-
based or statistical—are available to them, even on an 
entirely formal task such as arithmetic. The engagement of 
visual features and processes indicates that formal reasoning 
shares mechanisms with the diagrammatic and pictorial 
reasoning processes with which it is normally contrasted. In 
short, our research indicates that, when displayed correctly, 
even a sentence is worth a thousand words. 
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