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Absract

We have developed an experimental platform that allows a
large number of human participants to interact in real-time
within a common virtual world. Within this environment,
human participants foraged for resources distributed in two
pools. In addition to varying the relative replenishment rates
for the two resources (50-50, 65-35, 80-20), we manipulated
whether participants could see each other and the entire food
distribution, or had their vision restricted to food at their own
location. Two empirical violations of optimal distributions of
participants were found. First, there was a systematic
underutilization of the more preponderant resource. Second,
there were oscillations in the harvesting rate of the resources
in a pool across time, revealed by a Fourier analysis with
prominent power in the range of 50 seconds per cycle. These
suboptimalities were more prevalent when participants had no
knowledge of other participants or the complete food
distribution. Individual participant knowledge thus affects the
efficiency with which a population of participants harvests
resources.

Introduction

A problem faced by all mobile organisms is how to search
their environment for resources. Animals forage their
environment for food, web-users surf the internet for desired
data, and businesses mine the land for valuable minerals.
When an individual organism forages their environment for
resources, they typically employ a form of reinforcement
learning to allocate their foraging time to the regions with
the highest utility in terms of providing resources (Ballard
1997). As the organism travels in its environment, it gathers
information about resource distributions and uses this
information to inform its subsequent movements. When an
organism forages in an environment that consists, in part, of
other organisms that are also foraging, then additional
complexities arise. The resources available to an organism
are affected not just by the foraging behavior the organism
itself, but also by the simultaneous foraging behavior of all
of the other organisms. The optimal resource foraging
strategy for an organism is no longer a simple function of
the distribution of resources and movement costs, but rather
is also a function of the strategies adopted by other
organisms. Even if the resources are replenished with a
constant rate, the optimal foraging strategy for an organism
may fluctuate depending on the other organisms’ behavior.
We have developed an experimental platform that allows
many human participants to interact in real-time within a
common virtual world. Inside this world, two resource
pools were created, and we recorded the moment-by-

moment exploitation of these resources by each human
agent. The research questions motivating the current study
are: “How do resource foraging strategies unfold with
time?,” “Are there systematic suboptimalities in resource
foraging?,” and “How are foraging strategies affected by the
distribution of resources and the agents’ knowledge of the
environment?”

Foraging in Groups

Determining how to allocate time and energy to resources is
a deep issue that also has practical importance in biology,
economics, psychology, and computer science. Biologists
have long entertained the hypothesis that animals forage for
resources in a near-optimal manner, given the distribution
and replenishment rate of the resources, the animals’
resource demands, and the energy expenditures required to
harvest the resources (Krebs & Davies, 1978). Biologists
studying individual foraging behavior have found many
situations where resource patches are visited by animals
with efficiency (Pleasants, 1989). For example,
hummingbirds have been shown to sample the rate of return
of flowers in a region, then forage one flower until the rate
of return is below the average for all flowers, and then
forage another flower with greater-than-average return
(Pyke, 1978).

These analyses from biology are based on a single
individual harvesting resources without competition from
other agents. This assumption is unrealistic in a world
where organisms typically congregate in populations.
Biologists have also explored the allocation of a population
of organisms to resources. One model in biology for
studying the foraging behavior of populations rather than
individuals is Ideal Free Distribution (Fretwell & Lucas,
1972). According to this model, animals are free to move
between resource patches and have correct (“ideal”)
knowledge of the rate of food occurrence at each patch. The
animals distribute themselves to patches where the gained
resources will be maximized. The patch that maximizes
resources will depend upon the utilization of resources by
all agents. Consistent with this model, groups of animals
often distribute themselves in a nearly optimal manner, with
their distribution matching the distribution of resources. For
example, Godin and Keeleyside (1984) distributed edible
larvae to two ends of a tank filled with cichlid fish. The
food was distributed in ratios of 1:1, 2:1, or 5:1. The
cichlids quickly distributed themselves in rough accord with



the relative rates of the food distribution before many of the
fish had even acquired a single larva and before most fish
had acquired larvae from both ends. Similarly, mallard
ducks distribute themselves in accord with the rate or
amount of food thrown at two pond locations (Harper,
1982). If one patch produces two times the amount of
resource as another patch, there will be about two times as
many animals at the larger relative to smaller resource.

The current research explores the foraging behavior of
groups of humans. In general accord with an Ideal Free
Distribution model, groups of fish, insects, and birds have
been shown to efficiently distribute themselves. Are groups
of people as rational as these animals? We were interested
in manipulating the relative outputs of the different resource
patches and the knowledge possessed by the agents. With
respect to the first manipulation, the central issue is whether
systematic inefficiencies in a population of agents arise as a
function of the distribution of resources. Although Godin
and Keenleyside found that cichlids approximately
distribute themselves in accord with the food resources, they
also found small but systematic deviations. For the 1:1 and
2:1 ratios of resources, the fish distributed themselves with
approximately 1:1 and 2:1 ratios respectively. However, for
the 5:1 ratio, the fish distributed with a ratio of
approximately 3:1. This pattern of agents distributing
themselves to resources in a less extreme (compared to a
baseline of uniform distribution) manner than the resources
themselves are distributed is called “undermatching.” If
undermatching occurs, then an adviser (perhaps a cichlid
efficiency consultant) would recommend that a fish
partaking of the resource with the lower output rate could
increase its resource intake by moving to the resource with
the higher output rate.

The few experiments that have examined group
foraging behavior with humans have also found
undermatching (Kraft & Baum, 2001; Madden, Peden, &
Yamaguchi, 2002; Sokolowski, Tonneau, & Freixa i Baque,
1999). In some of these experiments (Kraft & Baum, 2001;
Madden et al., 2002), each participant in a group holds up a
card indicating one of two colors, and then one color is
probabilistically selected as the rewarded card. The
participants who are holding up the rewarded color share the
rewards. In another paradigm (Madden et al., 2002),
participants move between two designated areas and share
rewards that are probabilistically deposited in these areas.
In both paradigms, greater average amounts of reward are
obtained by participants at the more productive resource,
indicating undermatching.

Our experiment extends the previous studies of group
foraging in humans in a few directions. First, we have
developed a computer-based platform for the foraging
experiment that allows us to manipulate experimental
variables that would be difficult to manipulate in a more
naturalistic environment. Second, we collect second-by-
second data on the number of resources and participants at
different resources, which allows us to explore variation in
resource use with high temporal resolution. Third, although

our environment is virtual, it is naturalistic in one important
respect — resources are distributed in a continuous spatial
environment rather than at two discrete locations. Fourth,
we do not designate or identify the resource alternatives to
participants. As in many natural situations (Kennedy &
Gray, 1993), the organisms must discover the number and
locations of resource patches themselves.

The other experimental variable that we manipulate is
agents’ knowledge of their environment and other agents.
In Godin and Keenleyside’s experiment with cichlids, every
cichlid could see the other cichlids as well as the larvae
resources at both ends of the tank. Gallistel (1990) argues
that this information is important for the cichlids to
distribute themselves rapidly in accord with the resource
distribution. They are learning about the resource
distributions by observing events that do not directly
involve themselves. However, in standard reinforcement
learning situations, an agent only has access to the outcomes
of their own actions. They do not have access to the values
of options not selected. Both situations occur naturally, and
it is possible that the ability of a group to efficiently
distribute itself to resources depends on the knowledge at
each agent’s disposal. It is plausible to hypothesize that as
the information available to agents increases, the efficiency
with which they can allocate their energy to resources
increases, although there are paradoxical cases where more
information seems to lead to worse decisions (Gigerenzer,
Todd, & The ABC Research Group, 1999).

Experiment in Group Foraging

We have developed a software system that records the
instant-by-instant actions of individuals foraging for
resources in a shared environment. Two resource pools
were created with different rates of replenishment. The
participants’ task was to obtain as many resource tokens as
possible during an experiment. An agent obtained a token
by being the first to move on top of it. In addition to
varying the relative replenishment rate for the two resources
(50-50, 65-35, or 80-20), we manipulated whether agents
could see each other and the entire food distribution, or had
their vision restricted to food at their own location. We
were interested in analyzing the resulting data for dynamics
and sub-optimalities in the allocation of individuals to
resources.

Experimental Methods

One-hundred and sixty-six undergraduate students from
Indiana University served as participants in order to fulfill a
course requirement. The students were run in 8 groups with
21, 20, 23, 19, 28, 12, 25, and 18 participants. Each student
within a group was assigned to a PC computer in a large
computer-based classroom with 40 computers. The
experimenter controlled the experiment from another
computer in the same room. The participants’ computers
were registered with the experimenter’s computer using our
developed software for sending messages over the internet
to a set of networked computers.



Participants were told that they were being asked to
participate in an experiment on group behavior. They were
instructed to try to pick up as many “food” resources as
possible by moving their icons’ position on top of food
locations. Participants were told that the food would occur
in clumps, and if they learned where the productive clumps
were that they could harvest more food. Participants were
also told that there would be a lottery at the end of the
experiment to win $10, and every piece of food that they
collected during the experiment would be worth one lottery
ticket. In this manner, participants were motivated to collect
as many pieces of food as possible, even if at some point in
the experiment they felt that it was improbable that they
could collect more food than any other participant.
Participants were told to only look at their own computer
screen and not to talk with each other at any time.

Participants within a group co-existed in a virtual
environment made up of replenishing resource pools and
other human-controlled agents. The environment consisted
of an 80 X 80 grid of squares. Participants controlled their
position within this world by moving up, down, left, and
right using the four arrow keys on their computers’
keyboard. A participant could not walk off one side of the
grid and reappear on the other. Each participant was
represented by a yellow dot. In the “Visible” condition, all
of the other participants’ locations were represented by blue
dots, and available food resources were represented by
green dots. In the “Invisible” condition, each participant
saw only their own position on the screen and any food
gathered by that participant in the last two seconds. After
this time interval, these consumed food pieces disappeared.
In both conditions, food was gathered when a participant’s
position coincided with a piece of food.

Every experiment was divided into six 5-minute
sessions. These six games consisted of all combinations of
the two levels of knowledge (Visible versus Invisible) and
the three levels of resource distribution (50/50, 65/35,
80/20). For each of the three distribution conditions, two
resource pools were constructed, with center locations at
reflections and rotations of the set of coordinates {40,15}
and {15, 65}. A different reflection and rotation was used
for each of the six conditions, with the result that the
resource centers were approximately equally likely to be in
each of eight possible locations, and the two centers within
one session always had the same distance from one another.
Two opposite orders of the six games were randomly
assigned to the eight separate groups of participants. Each
order began with a visible condition and then alternated
between visible and invisible conditions.

The rate of distribution of food was based on the
number of participants, with one piece of food delivered
every 4/N seconds, where N is the number of participants.
This yields an average of one food piece per participant per
four seconds. When a piece of food was delivered, it was
assigned to a pool probabilistically based upon the
distribution rate. For example, in the 80/20 condition, the
food would occur in the more plentiful pool 80% of the

time, and in the less plentiful pool 20% of the time. The
location of the food within the pool followed a Gaussian
distribution with a mean at the center of the pool and a
variance of 5 horizontal and vertical positions. Thus, the
probability of food occurring in a given location was
inversely proportional to the distance between the location
and pool’s center. Since multiple agents could occupy the
same location without colliding, any food placed on such a
location would be randomly assigned to one of the agents at
that location.

Each of the six sessions lasted 5 minutes. Data were
recorded every two seconds that included the positions of all
agents, the number of food pieces collected by each agent,
and the locations of uncollected food pieces.  After all six
sessions were completed, a winning participant was selected
to receive $10 by an automatic lottery. The probability of a
participant winning the lottery was equal to the number of
food pieces they collected divided by the total number of
food pieces collected by all participants.

Results

As a preliminary analysis of the distribution of agents across
resource pools, Figure 1 shows the frequency with which
each of the 80 X 80 grid cells was visited by participants
broken down by the six experimental conditions. The
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brightness of a cell increases proportionally with the number
of times the cell was visited. The few isolated white specks
can be attributed to participants who decided not to move
for extended periods of time. In Figure 1, the thick and thin
circles show two standard deviations of the food distribution
for the more and less plentiful resources, respectively. An
inspection of this figure indicates that agents spend the
majority of their time within relatively small regions
centered on the two resource pools. The concentration of
agents in pools’ centers is greater for visible than invisible
conditions, and is greater for the more plentiful pool. For
the invisible conditions, there is substantial diffusion of
travel outside of one standard deviation of the pools’
centers. A Cochran’s test for homogeneity of variances
revealed significantly greater variability for the invisible
than visible condition (p<.01), indicating greater scatter of
agents’ locations in the invisible condition. The agents
approximately distributed themselves in a Gaussian form,
with the exception of a small second hump in the frequency
distribution in the invisible condition. The cause of this
hump is that cells near the edges of the 80 X 80 grid that

50/50
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were close to pools were frequented somewhat more often
than cells closer to the pool’s center.

The dynamics of the distribution of agents to resources
is shown in Figure 2, broken down by the six conditions. In
this figure, the proportion of agents in the two pools is
plotted over time within a session. Horizontal lines indicate
the proportions that would match the distribution of food.
An agent was counted as residing in a pool if he/she was
within 5 food distribution standard deviations of the pool’s
center. This created circular pools that were as large as
possible without overlapping. Agents who were not in
either pool were excluded from Figure 2, and the total
number of agents was normalized to exclude these agents.
Figure 2 shows that agents roughly match the food
distribution probabilities and that asymptotic levels of
matching are found within 40 seconds even for the invisible
condition. Although fast adaptation takes place, the
asymptotic distribution of agents systematically
undermatches the optimal probabilities. For the 65/35
distribution the 65% pool attracts an average of 60.6% of
the agents in the 50-300 second interval, a value that is
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significantly different from 65%, one-sample T-test,
t(7)=3.9, p<.01. Similarly, for the 80/20 distribution, the
80% pool attracts only 73.5% of the agents, t(7)=4.3, p<.01.
For the 65/35 distribution, the asymptotic percentage of
agents in the 65% pool in the visible condition (61.3%) was
greater than in the invisible condition (60.0%), paired T-test
t(7)=2.4, p < .05. Likewise, for the 80/20 distribution, the
asymptotic percentage of agents in the 80% pool in the
visible condition (74.8%) was greater than in the invisible
condition (72.2%), t(7)=2.9, p < .05. Another trend,
apparent in Figure 2, is that the proportions of agents in a
given pool vary more sporadically with time for the
invisible than visible conditions. This is because agents
more often move themselves outside of a designated pool in
the invisible condition. The percentage of agents falling
outside of either pools during the interval 50-300 seconds
were 1.2% and 13.4% for visible and invisible conditions
respectively, paired t(7)=8.4, p<.01.

A final analysis of interest explores the possibility of
periodic fluctuations in resource use. Informal experimental
observations suggested the occurrence of waves of overuse
and underuse of pools. Participants seemed to heavily
congregate at a pool for a period of time, and then became
frustrated with the difficulty of collecting food in the pool
(due to the large population in the pool), precipitating an
emigration from this pool to the other pool. If a relatively
large subpopulation within a pool decides at roughly the
same time to migrate from one pool to another, then cyclic
waves of population change may emerge. This was tested
by applying a Fourier transformation of the data shown in
Figure 2. Fourier transformations translate a time-varying
signal into a set of sinusoidal components. Each sinusoidal
component is characterized by a phase (where it crosses the
Y-intercept) and a frequency. For our purposes, the desired
output is a frequency plot of the amount of power at
different frequencies. Large power at a particular frequency
indicates a strong periodic response.

Any periodic waves of population change that occur in
the experiment would be masked in Figure 2 because the
graphs average over 8 different groups of participants. If
each group showed periodic changes that occurred at
different phases, then the averaged data would likely show
no periodic activity. Accordingly, to produce the frequency
plot showed in Figure 3, we conducted four steps of
analysis. First, we derived a data vector of the proportion of
agents in the more plentiful pool across a five-minute
session for each of the 8 groups within each of the 6
conditions. Second, we detrended each vector by removing
the best straight-line fit from it. If we had not done this, the
resulting frequency plot would exhibit inappropriately high
power in low frequencies, reflecting slow trends in
population growth or decline. Third, we applied a digital
Fourier transformation (Fast-Fourier Transform) on each
detrended vector. Fourth, we created the frequency plots in
Figure 3 by averaging the frequency plots for the 8 groups
within a single condition.

The resulting frequency plots show significantly greater
power in the low frequency spectra for invisible than visible
conditions. In particular, the average power for frequencies
up to .05 cycles is 3.4 and 1.1 for invisible and visible
conditions, paired T-test t(7)=4.1, p<.01. The power in
lower frequencies is particularly high for the invisible
condition with an 80/20 distribution. For all three invisible
conditions, the peak power is at approximately .02
cycles/second. This means that the agents tend to have
waves of relative dense crowding at one pool that repeat
about once every 50 seconds. This 50 second period
includes both the time to migrate from the first pool to the
second pool and to return to the first pool. A pronounced
power peak at lower frequencies is absent for the visible
condition. One account for the difference in the two
visibility conditions is that in the visible condition, each
agent can see the whether other agents are closer than
themselves to underexploited resource pools. The
temptation to leave a dissatisfying pool for a potentially
more lucrative pool would be tempered by the awareness
that other agents are already heading away from the
dissatisfying pool and toward the lucrative pool. However,
in the invisible condition, agents may become dissatisfied
with a pool populated with many other agents, but as they
leave the pool they would not be aware that other agents are
also leaving. It is less clear why periodic population waves
should be greatest for the most lop-sided, 80/20 distribution,
but one speculation is that the slowly replenishing 20% pool
has the least power to attract a stable population of agents.
A few agents can come into the 20% pool and quickly
exhaust all of the fallen food resources. Then, the slow
replenishment rate gives all of the agents in the pool little
incentive to stay, and they consequently move to the 80%
pool, until eventually the 20% pool becomes attractive again
because of its low population density and cache of
accumulated food.



Conclusions

The results of the present experiment indicate three
systematic inefficiencies in the distribution of human
participants to resources over time. First, participants
exhibited undermatching in the sense that there were too
many participants in the less plentiful resource and too few
participants in the more plentiful resource. This
undermatching is implied by comparing the distribution of
agents to the distribution of resources, and is also directly
indicated by the lower rate of food intake for agents in less
plentiful compared to more plentiful resource. If this result
proves to be general, then advice could be given to
participants in similar situations to increase their use of
relatively plentiful resources despite the possibly greater
population density at those resources. Second, systematic
cycles of population change are apparent whereby the
migration of people from one pool to another is roughly
synchronized. The problem with these synchronized
population waves is that competitive crowding results in
decreased food intake for those participants moving in the
wave. Third, participants were more scattered than were the
food resources. Both participants and food were distributed
in a roughly Gaussian form, but the positional variance
associated with participants was higher.

All three of these systematic inefficiencies were more
pronounced for invisible than visible conditions. In fact, of
the three inefficiencies described above, the only one that
was appreciably large in the visible condition was the
systematic undermatching. The influence of visibility
suggests that an individual’s knowledge of the moment-by-
moment state of the environment and other agents can allow
the group as a whole to avoid inefficient waves of resource
under- and over-exploitation.

A fruitful extension to the current work would be the
development of an agent-base computer simulation that
models the large quantity of spatial-temporal population
information amassed in the experiment. Such a model
would need to incorporate a distinction between agents with
and without vision. Blind agents might resemble standard
reinforcement learning devices if supplemented by biases
that undermatch distributions. Incorporating agents with
vision is more challenging, raising important issues in
generating expectations and planning. However, the current
empirical work suggests that developing these more
sophisticated agents with knowledge is worth the trouble.
Knowledge of food distributions allows an agent to more
effectively match those distributions, whereas knowledge of
other agents allows an agent to more effectively decouple
their responses from others.

Acknowledgments

The authors wish to express thanks to Jerry Busemeyer,
Jason Gold, Nathan Steele, and William Timberlake for
helpful suggestions on this work. This research was funded
by NIH grant MH56871 and NSF grant 0125287.

References

Ballard, D.H. 1997, An introduction to natural computation,
MIT Press (Cambridge).

Fretwell, S. D. & Lucas, H. J. (1970). Ideal free distribution.
Acta Biotheory 19, 16-21.

Gallistel, C.R., 1990, The organization of learning, MIT
Press (Cambridge).

Gigerenzer, G., Todd, P.M., & the ABC Research Group,
1999, Simple heuristics that make us smart, Oxford
University Press (Oxford).

Godin, M.J., & Keenleyside, M.H.A., 1984, Foraging on
patchily distributed prey by a cichlid fish (Teleosti,
Chichlideae): A test of the ideal free distribution theory,
Animal Behavior, 32, 120.

Harper, D.G.C., 1982), Competitive foraging in mallards:
Ideal free ducks, Animal Behavior, 30, 575.

Kraft, J. R., & Baum, W. M. (2001). Group choice: The
ideal free distribution of human social behavior. Journal
of the Experimental Analysis of Behavior, 76, 21-42.

Madden, G. J., Peden, B. F., & Tamaguchi, T. (2002).
Human group choice: Discrete-trial and free-operant tests
of idea free distribution. Journal of the Experimental
Analaysis of Behavior, 78, 1-15.

Krebs, J.R., & Davies, N.B., 1978, Behavioural Ecology:
An Evolutionary Approach. Blackwell (Oxford).

Pleasants, J.M. 1989. Optimal foraging by nectarivores: a
test of the marginal-value theorem. American Naturalist,
134, 51.

Pyke, G.H. 1978. Optimal foraging in hummingbirds:
testing the marginal value theorem. American Zoologist,
18, 739.

Sokolowski, M. B. C., Tonneau, F., & Freixa I Baque, E. F.
(1999). The ideal free distribution in humans: An
experimental test. Psychonomic Bulletin & Review, 6,
157-161.



