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Abstract 
How well do people search an environment for non-depleting 
resources of different quality, where it is necessary to switch 
between exploring for new resources and exploiting those 
already found? Employing a simple card selection task to 
study exploitation and exploration, we find that the total 
resources accrued, the number of switches between exploring 
and exploiting, and the number of trials until stable 
exploitation becomes more similar to those of the optimal 
strategy as experience increases across searches. Subjects 
learned to adjust their effective (implicit) thresholds for 
exploitation toward the optimal threshold over 30 searches. 
Those implicit thresholds decrease over turns within each 
search, just as the optimal threshold does, but subjects’ 
explicitly stated exploitation threshold increases over turns.  
Nonetheless, both the explicit and learned implicit thresholds 
produced performance close to optimal. 

Keywords: exploration; exploitation; explore/exploit tradeoff; 
optimal search; threshold strategy. 

Introduction 
Search is a ubiquitous requirement of everyday life. 
Scientists need to search for information to help their 
research; web users use search engines like Google to get 
whatever they are interested in from the internet; companies 
search for the best candidates for their job openings; 
consumers searching in supermarkets with hundreds of 
brands of candies have to decide if they have found one that 
is good enough or if they should explore to find something 
even tastier.  

In many real life situations, to search (or explore) or to 
stop searching (and exploit the fruits of the search) is a key 
issue for making better decisions. Organisms have to make 
tradeoffs between exploration and exploitation so as to 
improve their success in the environment. Consider a 
honeybee searching for nectar in flowers. Suppose the 
honeybee has visited a particular plant and found most of 
the nectar in its flowers.  The bee must decide whether it is 
worth spending more time to find still more nectar on this 
plant, exploiting it further, or whether it would be better off 
leaving this plant and exploring to look for another. Staying 
too long on the flowers of this plant is wasteful, and the bee 
should move to another plant with higher initial rate of 
nectar supply; however, leaving that initial flower plant too 
early is also suboptimal because travelling between resource 
patches will cost time and energy, and there is uncertainty 
about the resource levels of flowers that have not yet been 
visited. To maximize intake of nectar, the bee needs a 
decision rule that balances exploration of new resource sites 
with exploitation of known resource sites (Charnov, 1976).  

The same tradeoff between exploiting what you already 
have and exploring further to find something preferable 
applies to humans. For instance, should you take the parking 
space you have just found or keep driving closer to your 
destination hoping to find a better one?  Should you stick 
with your current job, or partner, or brand of coffee, or 
explore further to see if there are better options to be found?   

Many researchers have focused on aspects of exploration 
versus exploitation. Optimal decision mechanisms and 
heuristic rules of thumb have been proposed to model when 
animals leave patches to find new ones (Charnov, 1976; 
Bell, 1991; Livoreil & Giraldeau, 1997; Wajnberg, 
Fauvegue, & Pons, 2000). Mathematicians have studied 
optimal stopping problems where the task is to decide when 
to stop the exploration phase of search and exploit a 
particular chosen option; Ferguson (1989) reviews work on 
one well-known form of this task, the so-called Secretary 
Problem.  Todd and Miller (1999) applied this kind of 
framework to the problem of searching for a mate, studying 
the simple heuristics that could work well to stop 
exploratory search once an appropriate partner was 
encountered, and Beckage, Todd, Penke, and Asendorpf 
(2009) found evidence of use of such rules by people 
searching for mates at speed-dating events. Lee (2006) 
developed Hierarchical Bayesian models to account for 
human decision making on an optimal stopping problem. 

Different resource types and environmental structures call 
for different search strategies. Thus, how well humans 
perform in experiments involving the exploration/ 
exploitation tradeoff depends on the task details, which 
influence not only optimal search strategies, but also the 
actual strategies employed by subjects. In this paper we 
focus on search behavior in a resource-accumulation setting, 
in which individuals make a series of decisions as to 
whether to explore to find a new resource or exploit a 
previously-encountered one, accumulating value from both 
newly-found and previously-discovered, currently-exploited 
resources as they search. 

Search Task 
In the experiment, individuals had to accrue as many points 
from cards as possible over a 20-turn game.  At each turn, a 
subject could either explore by flipping over a card with 
unknown points from a card deck, or exploit a card already 
uncovered by selecting it from a computer screen. With this 
accumulation of resources (e.g. points) during both 
exploration and exploitation and the ability to return to 
previously-found items, this search task resembles a non-
competitive foraging task with non-depleting resources.  
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Note that these task settings differ from the classic 
Secretary Problem and the widely studied patch-foraging 
problem. Compared to the Secretary Problem, individuals in 
our experiment have knowledge of the outcome distribution 
(card values are uniformly distributed from 1 to 99). They 
can switch from exploitation back to exploration (even 
though this is never done by the optimal strategy), whereas 
the Secretary Problem involves searching (exploring) until a 
single option is chosen (exploited).  Individuals are also able 
to go back and exploit previous items, and they receive 
points in both exploration and exploitation phases, whereas 
the Secretary Problem payoff is determined solely by the 
final choice made.  In a typical patch-foraging problem, 
foragers usually do not know the distribution of resources in 
patches, exploring between patches has costs, and exploiting 
a patch makes its value go down over time (depleting 
resources), so that foragers usually do go back and exploit 
previously-found patches even though they could. 

Many possible rules could describe subjects’ behavior in 
our search task. These include intertia-based rules (subjects 
have a tendency to repeat the previous action, be it 
exploration or exploitation), impatience-based rules (after 
some number of turns doing one action, individuals lose 
patience and switch to the alternative action), and threshold 
rules (switch from explore to exploit when a value above a 
particular threshold is found). We focus here on threshold 
rules, in part because that is the form of the optimal strategy. 

Optimal Strategy 
To judge how well subjects perform, it is useful to 
understand the optimal strategy for the given task settings in 
our experiment. The optimal strategy is to use a decreasing 
threshold, switching from exploration to exploitation 
whenever the best card seen so far exceeds the current 
threshold level. According to the optimal strategy, the 
decreasing threshold curve only depends on the range of 
card values (highest and lowest) and the total number of 
turns in one search game. 

Let H denote the highest possible value for a card, L 
denote the lowest possible value, N denote the total number 
of turns in one game, n denote the current turn within the 
game, and dn denote the optimal threshold value for the nth 
turn. 

Also let: 
A = (N−n)∙(H2+H),  
B = (H+L)∙(H−L+1),  
C = (N−n)∙(2H+1) + 2(H−L+1), 

 
then dn = 

 
What would the threshold curve look like? In our 

experiment, H=99, L=1, and N=20. The threshold curve for 
these values is plotted in Figure 1. 
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Figure 1: Optimal threshold curve.  Over turns, the 

optimal threshold for exploiting the highest drawn card falls 
from about 80 on turn 1 to 50 on turn 20. 

Experiment 
191 subjects were recruited for the experiment from the 
Indiana University psychology student subject pool. They 
were told that their goal was to accumulate as many points 
as possible in each search game, by flipping over cards 
whenever they wanted or taking the points from cards 
already exposed on the screen. Subjects were also informed 
that the point values for cards ranged from 1 to 99, with 
equal probability (i.e., card values were uniformly 
distributed between 1 and 99), selected with replacement.  

In the experiment, a turn refers to one time of either 
exploration or exploitation, and every trial contains 20 turns. 
The interface for the experiment is shown in Figure 2. Every 
card had its value displayed on it. In the first of the 20 turns, 
the subject must explore, flipping over the top card on the 
deck.  After seeing its value and having that added to their 
accumulating points, subjects could do either of two actions 
on the second turn (and all subsequent turns): select a new 
card from the deck (exploring), or select one of the cards 
that he/she had already turned over (exploiting). The screen 
displayed the number of turns taken, the total points 
obtained thus far for this trial, and the highest card value 
seen so far in the trial (by showing that card’s point value in 
red on the card, while all other cards were shown in green). 

For example, in Figure 2, four cards have been taken from 
the card deck, with the first three values in green while the 
highest card value, 91, is in a larger red font. The screen 
shows that the number of turns taken thus far is 15, there are 
5 turns left, and the total points so far for this trial is 1245. 
The number of points received by the subject on each turn in 
this trial is also listed beside the deck. On this 16th turn, the 
subject should decide whether he/she wants to exploit the 
highest value 91 again, as they have done for the previous 
12 turns, or explore the deck hoping for a higher card value. 

After each of the 30 independent trials, subjects were told 
the points they received and the points that the optimal 
strategy would have earned. After finishing all 30 trials, 
subjects reported their explicit threshold—the minimum 
value of the maximum card seen so far that would lead them 
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to exploit that value rather than explore by flipping over a 
new card from the deck, for turns 2, 5, 9, 13, 17, and 20.  

 

 
 
Figure 2: The interface of the experiment.  The face-down 

card in the lower-left corner represents the deck of unknown 
cards, while the four cards in the upper portion of the screen 

represent turned-over cards. 

Results 
Across all of the turns taken by all subjects (191∙30∙20 = 
114600 turns), there was 73.3% exploitation and 26.7% 
exploration. For the optimal strategy, there is more 
exploitation: 81%. Subjects’ mean total points per 20-turn 
trial was 1528 (SD 266); for optimal, it was 1601. 

Switch and Exploitation 
The optimal strategy dictates that there would be at most 
one switch from exploration to exploitation per 20 turn 
trial—whenever the highest card seen so far exceeds the 
current threshold level. Subjects, by contrast, might switch 
back from exploitation to exploration for many reasons, 
including intrinsic randomness, boredom, or changing 
strategies over time. And then as the end of the trial 
approaches, they may well switch to exploitation again to 
take advantage of previously found high values. The data 
indicates that subjects switch between exploration and 
exploitation a mean of 1.83 times per trial.  

In general, after some point subjects switch to 
exploitation and only exploit for the rest of the turns until 
the end of the trial. The turn where this continuing 
exploitation begins depends on the search strategy used. For 
example, a strategy with a constant threshold of 90 would 
lead to a later mean switch point than the optimal strategy 
does, because cards exceeding this high threshold are less 
common than cards exceeding the decreasing optimal 
threshold. The mean of the starting turn for this continuing 
exploitation is 7.35 across all subjects. We also simulated 
data for the same number (191*30 = 5730) of trials 
following the optimal strategy, and found the mean starting 
turn for continuing exploitation to be 5.14. Accordingly, 
people continue exploring for longer than optimal, but only 
by about two turns.  Figure 3 shows the frequency 

distributions of these starting-final-exploitation turns for 
both the actual data and the optimal strategy. Compared to 
the optimal strategy, the distribution of the actual data has a 
long fat tail, which means that some subjects explored even 
until the very end and did not exploit a high value when 
they found it (which is likely—if someone explores for 10 
turns, the probability that he/she will see a value larger than 
80 is about 90%). 
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Figure 3: Frequency distributions of starting turns for 
final exploitation phase, for subjects (left) and optimal 

strategy (right). 

Explicit and Implicit Thresholds 
At the end of the experiment, we asked subjects to declare 
the minimum card value that they would have been satisfied 
with, and hence stop exploring and instead exploit this card 
for the rest of the turns.  We asked them to disclose this 
value for turns 2, 5, 9, 13, 17, and 20. These values can be 
treated as indicating subjects’ explicit thresholds; they are 
plotted in Figure 4, linearly interpolated. Generally speaking, 
this is an increasing curve, which moves in the opposite 
direction of the optimal threshold over turns.  

At the individual level, we categorized subjects into four 
different types according to the trends of their explicit 
thresholds. If the reported thresholds at those 6 turns 
remained the same, subjects were classified as ‘Constant’; if 
the values increased at least once and never decreased, 
subjects were classified as ‘Increasing’; if the values 
decreased at least once and never increased, subjects were 
classified as ‘Decreasing’; otherwise, they were labeled as 
‘Mixed’. Among 188 subjects (3 were excluded due to 
incomplete questionnaires), 71 subjects were Increasing, 47 
were Decreasing, 19 were Constant, and 51 were Mixed. 
Not only is the general trend of the mean explicit threshold  
increasing over turns, but there are also far more subjects 
classified as individually ‘Increasing’ than ‘Decreasing’. 

As mentioned above, we focus on the threshold rule that 
subjects may use. In addition to subjects’ explicit thresholds, 
we also analyzed the implicit thresholds that underlie their 
actual actions in the experiment. To estimate subjects’ 
implicit thresholds, one way is to treat the implicit 
thresholds at different turns as parameters of cognitive 
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models and use the maximum likelihood estimation (MLE) 
method to estimate them. Here we propose two models, 
both of which have a stepwise threshold. The reason for 
using stepwise rather than continuous threshold models is 
that we want the estimates of the implicit thresholds to 
match up with the 6 separate explicitly reported thresholds. 

Model A has 6 parameters, each representing a part of a 
stepwise threshold. Let Ti (1≤i≤6) be the 6 parameters; then 
T1-T6 respectively represent the thresholds that apply across 
turns 1-2, 3-5, 6-9, 10-13, 14-17 and 18-20. For each of 
these ranges of turns and corresponding Ti the model is: 

 
Pr(explore) is the probability of exploration on the current 
turn, Max is the highest card value seen (on the table) before 
the current turn, and Ti has a range from 1 to 99. 

Model B is nested with Model A, but has another free 
parameter, the sensitivity parameter s. It is a positive value 
that reflects how strongly the subject follows this threshold 
rule—if s is large, then subjects usually make a choice that 
is consistent with the threshold Ti, and if s is small, there can 
be a lot of randomness in the subject’s choices. The model 
at each step for Ti is: 

 
We used MLE to estimate parameter values of the two 

models for each individual. To select the model describing 
the data better, the Bayesian Information Criterion (BIC) 
was used to compare models. Because most of the 
parameter estimations are negatively skewed, here we chose 
the median, rather than mean, of the index BICm of each 
model (Busemeyer & Stout, 2002). The model with smaller 
BICm is preferred. The results show that 2*BICModelA = 335.6, 
and 2*BICModelB = 316.8. Hence Model B is selected to 
estimate the 6 threshold parameters and the parameter s. 

Because the parameter distributions are skewed, the 
median is used to represent their central tendency. The 
median of s is 0.13. Medians of implicit threshold 
parameters are shown Figure 4. The implicit threshold curve 
is decreasing over turns. 
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Figure 4: Explicit, implicit, and optimal thresholds. 

Threshold Performances 
The explicit, implicit, and optimal thresholds show 
considerable differences, with the first increasing over turns, 
while the implicit and optimal decrease. Moreover, in 
Figure 4, most parts of the implicit threshold are below the 
optimal. How do these differences in threshold values play 
out in terms of actual search performance? Does the 
explicitly stated threshold work better than the implicit 
threshold derived from subjects’ actual choices, and how do 
both compare with the optimal strategy? 

To answer these questions, first we linearly interpolated 
the explicit and implicit thresholds between the 6 known 
data points (turns 2, 5, 9, 13, 17, and 20) to obtain threshold 
values for all 19 turns (2-20), as shown in Figure 4. Then we 
performed 100,000 simulation runs for each of the three 
thresholds. The frequency distributions of performance 
(points per trial) for each are shown in Figure 5. All three 
distributions are negatively skewed. The frequency 
distribution of the implicit threshold is slightly more similar 
to that of the optimal strategy than is the explicit distribution, 
but all three are very similar. The mean and median of 
performance following the optimal strategy are 1601 and 
1635; for the implicit threshold, 1595 and 1621; and for the 
explicit threshold, 1592 and 1603. The mean of subjects’ 
actual performance on each trial, 1528, is a little farther 
away from the optimal performance, perhaps because of 
noise in subjects’ choices or their use of different rules. 
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Figure 5: Frequency Distributions of Performance (Points 
Earned) by the Optimal, Implicit, and Explicit Thresholds. 

Learning Effects 
Although subjects do not know or follow exactly the 
optimal strategy, their implicit and explicit thresholds 
perform quite well—considering the noise in the actual data, 
these thresholds achieve impressively close to optimal 
results.  How does this happen?  Are subjects consistent in 
their performance across the 30 trials, or do they learn and 
improve based on the feedback provided after each trial?  

To find out, we divided subjects’ data into three parts 
according to trials. Data from the first trial to the 10th trial 
form the first part (F); the middle 10 trials are the second 
part (M); and the last 10 trials are the third part (L). Across 
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the three parts, we analyzed number of switches per trial, 
the turn number on which continuing exploitation 
commenced, and actual performance; these measures are 
shown in Table 1.  Clearly, all three measures improved 
from the first to the last 10 trials, all coming closer to the 
optimal strategy. The frequency distributions of the starting 
turn of continuing exploitation of the three parts are shown 
in Figure 6 along with the optimal threshold’s distribution. 
Again over trials, the distribution becomes more similar to 
the optimal one. Thus overall, learning occurs in terms of 
avoiding repeated switching between exploring and 
exploiting, and sticking to exploiting high-valued cards 
earlier, yielding increasing performance as well. 
 

Table 1: Learning effects across trials from F to L. 
 

 Number 
of 
switches 

Starting 
turn of final 
exploitation 

Performance 

F 2.57 8.77 1492 
M 1.54 6.9 1539 
L 1.39 6.39 1553 
Optimal 1 5.08 1601 
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Figure 6: Distributions of turn number on which 

continuing exploitation commenced, changing over trials.  
Continued exploitation commences earlier as more trials are 

completed, and come close to the optimal distribution. 
 

Finally, Model A was applied to each of the three parts of 
the data to estimate the implicit threshold across subjects for 
each of the ranges of trials.  Because each subject only has 
10 trials in each subset of the data, fewer data points can 
contribute to the modeling process, and if we tried to model 
implicit thresholds for subjects individually in these data 
subsets, there would be many subjects that both Model A 
and Model B would not fit well. To solve this problem, we 

combined all subjects’ data of each subset together, and 
treated them as if they came from only one subject. s in 
Model B is a parameter of individuals’ sensitivity. Given 
that all subjects’ trials are combined together in each subset, 
the s in each section should be the same. In other words, it is 
no longer necessary to include this parameter s. Therefore 
instead of using Model B, Model A was selected to estimate 
the implicit threshold for each section.  

The three implicit thresholds for the different trials are 
plotted in Figure 7, together with the optimal threshold. 
Basically, after turn 6, the implicit threshold value at each 
turn becomes smaller as the experiment continues (going 
from F to M to L). Overall, experience with the task leads 
subjects to more robustly use turn number as a factor in 
determining their thresholds. 

For the first few turns, no matter which strategy someone 
uses, it is very important to set threshold values high enough 
to achieve a good performance. Consider the optimal 
strategy: the mean of the optimal threshold from turn 1 to 
turn 5 is around 80. If you explore consecutively for 5 times, 
the probability that you get at least one value higher than 80 
among these 5 turns is about 70%. Most of time, this would 
let you achieve a good total score. But if you used a lower 
threshold value in the beginning, this would harm the final 
score substantially. Subjects also appear to learn this over 
multiple trials from F to M and L, increasing their implicit 
thresholds before turn 5. 
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Figure 7: Implicit threshold curves found for the first, 
middle, and last trials across subjects (F, M, L), and the 

optimal threshold. 
 
One interesting result is that after turn 5, implicit 

threshold curves diverge from the optimal one, and more 
strongly with more learning. Also surprisingly, the implicit 
thresholds go below 50 in M and L by the final turns (and it 
should never be appropriate to set a threshold for exploiting 
that is less than the mean value obtained from exploring, 
here 50). We think two possible reasons can account for 
these patterns. First, this could the result of noisy data 
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toward the end of each search trial.  Given that subjects 
switch from exploring to exploiting at some point as turns 
go up, most of the data points at the end of turns involve 
exploiting a previously-found high value, rather than 
exploring the deck, so there is little data about when 
subjects would be willing to explore late in each trial. To 
maximize the log likelihood, Model B prefers to lower the 
corresponding threshold values as much as possible for 
those final turns, which would cause the implicit thresholds 
to become quite low (if also unreliable). The second reason 
is that subjects may really learn rules that direct them to 
decrease the implicit threshold for the last several turns. 
These explanations will be tested in further experiments. 

Conclusions 
The current paper addresses the issue of how people search 
an environment consisting of non-depleting resources by 
choosing between exploration and exploitation. The results 
indicate that subjects perform close to optimally, and get 
better over time with learning based on feedback.  Subjects’ 
mean total points per trial, number of switches between 
exploring and exploiting, and number of turns before 
starting continued exploitation become more similar to those 
of the optimal strategy as they go through more trials of 
searching. Subjects also appeared to adjust their implicit 
thresholds toward the optimal solution. The adjustment 
leads to a final implicit threshold that achieved a cumulative 
score quite close to the optimal one—even though that final 
implicit threshold has a simple linear shape, quite different 
from the accelerating falloff seen in the optimal threshold.  
It could be that the learning process is more adept at 
constructing a simple linear rule of this form than what 
optimal performance calls for; however, in this setting at 
least, performance hardly suffers as a consequence. 

However, subjects themselves did not correctly report 
their use of a threshold that decreased over turns in each 
search trial: When asked to explicitly specify their 
thresholds, they stated ones that changed in the opposite 
direction of the implicit and optimal thresholds. This may 
have been due to subjects with little introspective insight 
just proposing that their threshold should increase as the 
trials increase, without thinking much more about the 
problem.  In short, subjects do not explicitly know what is 
optimal nor what they are actually doing, as is often found 
in decision making tasks (Nisbett & Wilson, 1977), but they 
still get closer to optimal through a learning process. 

There are several future directions that we are exploring. 
In the current project, the resources are non-depleting, and 
subjects have the ability to repeatedly shift between 
exploration and exploitation. But we can also use this setup 
to simulate depleting resources as in patch-based foraging 
and single choice searches with no recall as in the Secretary 
Problem, and investigate subjects’ ability to learn 
appropriate strategies in those settings.  We can also look 
for individual differences in tendency to explore versus 

exploit, and how that plays out across different search 
settings, including information search on the Web, as well 
as priming effects between settings.  Finally, different 
populations may make the explore/exploit tradeoff in 
different ways, with some clinical populations emphasizing 
one aspect of search over the other (Hills, 2006); fMRI 
could also be useful in exploring these differences, as well 
as giving insights into the neural mechanisms used in search 
and whether they vary across different domains.  By 
stripping search down to a setting where exploration and 
exploitation are most prominent, these comparisons may 
help us elucidate the underlying strategies more effectively. 
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