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Human concept learning depends upon perception. Our concept of “car” is built out of 
perceptual features such as “engine,” “tire,” and “bumper.” However, recent research 
indicates that the dependency works both ways. We see bumpers and engines in part 
because we have acquired “car” concepts and detected examples of them. Perception both 
influences and is influenced by the concepts that we learn. We have been exploring the 
psychological mechanisms by which concepts and perception mutually influence one 
another, and building computational models to show that the circle of influences is benign 
rather than vicious.

Perceptual Learning Is “Early” Neurologically, Functionally, and Developmentally

An initial suggestion that concept learning influences perception comes from a considera-
tion of the differences between novices and experts. Experts in many domains, including 
radiologists, wine tasters, and Olympic judges, develop specialized perceptual tools for 
analyzing the objects in their domains of expertise. Much of training and expertise involves 
not only developing a database of cases or explicit strategies for dealing with the world 
but also tailoring perceptual processes to more efficiently represent the world (Gibson 
1991). Tuning one’s perceptual representation to the environment is a risky proposition. 
Once a perceptual representation has been altered, it affects all “downstream” processes 
that act as consumers of this altered representation. It makes sense to adapt perceptual 
systems slowly and conservatively. However, the payoffs for perceptual flexibility are also 
too enticing to forego. They allow an organism to respond quickly, efficiently, and effec-
tively to stimuli without dedicating on-line attentional resources. Instead of strategically 
determining how to use an unbiased perceptual representation to fit one’s needs, it is often 
easier to rig up a perceptual system to give task-relevant representations, and then simply 
leave this rigging in place without strategic control. Perceptual learning is early in several 
senses: neurological, functional, and developmental.
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Neurological Evidence

Several sources of evidence point to expertise influencing perceptual processing at a rela-
tively early stage of processing. First, electrophysiological recordings show enhanced 
electrical activity at about 164 milliseconds after the presentation of dog or bird pictures 
to dog and bird experts, but only when they categorized objects within their domain of 
expertise (Tanaka and Curran 2001). A similar early electrophysiological signature of 
expertise is found with fingerprint experts when they are shown upright fingerprints, but 
is delayed when the fingerprints are inverted (Busey and Vanderkolk 2005). Interestingly, 
the timing and form of this expertise-related activity is similar to the pattern found when 
people are presented with faces, a stimulus domain in which, arguably, almost all people 
are experts (Gauthier et al. 2003).

Second, prolonged practice with a subtle visual categorization results in much improved 
discrimination, but the improvements are highly specific to the trained orientation (Notman 
et al. 2005). This profile of high specificity of training is usually associated with changes 
to early visual cortex (Fahle and Poggio 2002). Practice in discriminating small motions 
in different directions significantly alters electrical brain potentials that occur within 100 
milliseconds of the stimulus onset (Fahle 1994). These electrical changes are centered over 
the primary visual cortex, suggesting plasticity in early visual processing. Karni and Sagi 
(1993) find evidence, based on the specificity of training to eye (interocular transfer does 
not occur) and retinal location, that is consistent with early, primary visual cortex adapta-
tion in simple discrimination tasks. In the auditory modality, training in a selective atten-
tion task produces differential responses as early in the sensory processing stream as the 
cochlea (Puel et al. 1988). This amazing degree of top-down modulation of a peripheral 
neural system is mediated by descending pathways of neurons that project from the audi-
tory cortex all the way back to olivocochlear neurons, which in turn project to outer hair 
cells within the cochlea (Suga and Ma 2003).

Third, expertise can lead to improvements in the discrimination of low-level simple 
features, as with the documented sensitivity advantage that radiologists have over novices 
in detecting low-contrast dots in X-rays (Sowden et al. 2000). Fourth, imaging techniques 
have succeeded in identifying brain regions associated with the acquisition of expertise. 
Expertise for visual stimuli as eclectic as butterflies, cars, chess positions, dogs, and birds 
has been associated with an area of the temporal lobe known as the fusiform face area 
(Bukach et al. 2006). The identification of a common brain area implicated in many 
domains of visual expertise suggests the promise of developing general theories and 
models of perceptual learning. This is the main purpose of our work.

Several other pieces of auxiliary evidence point to experience having early effects on 
perception, where “early” is operationalized neurologically in terms of a relatively small 
number of intervening synapses connecting a critical brain region to the external world. 
Experience making fine tactile discriminations influences primary somatosensory cortices. 
Monkeys trained to make discriminations between slightly different sound frequencies 
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develop somatosensory cortex representations for the presented frequencies than control 
monkeys (Recanzone et al. 1993). Similarly, monkeys learning to make a tactile discrimi-
nation with one hand develop a larger cortical representation for that hand than for the 
other hand (Recanzone et al. 1992). Elbert and colleagues (1995) measured brain activity 
in the somatosensory cortex of violinists as their fingers were lightly touched. There was 
greater activity in the sensory cortex for the left hand than the right hand, consistent with 
the observation that violinists use their left-hand fingers considerably more than their 
right-hand fingers.

Functional Evidence

In terms of functional evidence, experience often exerts an influence before other puta-
tively early perceptual processes have been completed. Peterson and Gibson (Peterson 
1994; Peterson and Gibson 1994; Peterson et al. 1991) found that the organization of a 
scene into figure and ground is influenced by the visual familiarity of the contours. Their 
participants were more likely to respond that familiar, compared to unfamiliar, forms were 
figural elements occluding the background. This effect was not found when flipping the 
scenes upside down eliminated familiarity, but was found regardless of whether the famil-
iar object was black or white. Interpreting the familiar region as a figure was found even 
when the unfamiliar regions had the strong Gestalt organization cue of symmetry. Peterson 
and Lampignano (2003) found direct evidence that the acquired familiarity of a shape 
successfully competes against Gestalt cues such as partial closure to determine the organi-
zation of a scene into figure and ground.

Consistent with an influence of training that occurs relatively early in the information-
processing stream, perceptual organizations that are natural according to Gestalt laws of 
perception can be overlooked in favor of perceptual organizations that involve familiarized 
materials. Behrmann and colleagues (1998) found that judgments about whether two parts 
had the same number of humps were faster when the two parts belonged to the same object 
rather than different objects. Further work found an influence of experience on subsequent 
part comparisons. Two fragments were interpreted as belonging to the same object if they 
had co-occurred many times in a single shape (Zemel et al. 2002). As shown in figure 9.1, 
object fragments that are not naturally grouped together because they do not follow the 
Gestalt law of good continuation (according to which there is an inherent tendency to see 
a line continuing its established direction) can nonetheless be perceptually joined if par-
ticipants are familiarized with an object that unifies the fragments.

Developmental Evidence

Perceptual learning is also “early” in the developmental sense. Many of the most striking 
changes to our perceptual systems occur in the first two years of life. Infants are surpris-
ingly adept at adapting their perceptual systems to statistical regularities in their environ-
ment. Needham and Baillargeon (1998, see also Needham 1999; Needham et al. 2005) 
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found that exposing infants to single or paired objects tended to lead the infants to parse 
subsequent events in terms of these familiarized configurations. As shown in figure 9.2, 
infants initially exposed to a cylinder abutting a rectangular box showed relatively long 
looking times, suggesting surprise, if one of the objects subsequently moved separately 
from the other. This surprise occurred even though the natural perceptual cue of minima 
of curvature (which would segment a scene into parts at negative minima of curvature on 
silhouette edges) (Hoffman and Richards 1984) would suggest a plausible division between 
the cylinder and box.

Paul Quinn and his colleagues (Quinn and Schyns 2003; Quinn et al. 2006) were inter-
ested in further pursuing the question of whether infants, like adults, can perceive objects 
in terms of familiarized parts rather than the parts given by default perceptual organiza-
tions. They contrasted familiarity-based segmentations with segmentations derived from 
one of the Gestalt perceptual laws of organization, good continuation. In figure 9.3, the 
shapes in the “familiarization” set are all ambiguous, interpretable as either a polygon 
combined with an overlapping circle or as a closed figure consisting of both straight lines 
and curves combined with a three-quarter-circle “Pac-man” shape.

The former interpretation is consistent with good continuation. Consistent with this law, 
three-to-four-month-old infants tend to see the shapes in the “familiarization” set as con-
taining a circle and a polygon. The evidence for this is that when the infants are subse-
quently presented with the full and three-quarters circle, they look at the full circles 39 
percent of the time and three-quarters circles 61 percent of the time (Quinn et al. 2006), 
shown as path A in figure 9.3. Prior base-line experiments showed that this looking prefer-
ence was not due to a general preference for the Pac-man shape; when infants were not 
first shown either the prefamiliarized or familiarized shapes, there was no reliable tendency 
for infants to preferentially look at the Pac-man shape. Together with many other experi-
ments on visual shape perception, this first result suggests that infants have a novelty 
preference—a preference to look at unfamiliar objects—and that the Pac-man shape seems 

A B C

Figure 9.1
Images used by Zemel et al. (2002). Object fragments that are not naturally grouped together because they do 
not follow the Gestalt law of good continuation (panel B) can nonetheless be perceptually joined if participants 
are familiarized with an object that unifies the fragments (panel C). Figure courtesy of Zemel and colleagues.
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novel because, although it is present in the familiarized shapes, it is not the natural seg-
mentation for infants to make. Their natural segmentation, like that of adults, is to obey 
follow the law of good continuation and interpret the ambiguous complexes as containing 
circles.

A second condition suggests that the infants’ segmentations can be altered by prior 
learning. For some infants, looking at the “familiarization” shapes were preceded by 
looking at the “prefamiliarization” shapes shown in figure 9.3. These “prefamiliarization” 
shapes consist of the Pac-man shape combined with a polygon. Habituation trials directly 
after infants saw the “prefamiliarization” shapes show that the infants interpreted these 
forms as containing the Pac-man shape, rather than a partially covered circle, as indicated 
by their tendency to look at the novel-seeming circle 56 percent of the time when it was 
presented next to a Pac-man shape. This tendency to preferentially look at the circle con-
tinued to be found even after the “familiarization” stimuli were shown to infants (path B 
in figure 9.3). This strongly suggests that the “familiarization” shapes are now interpreted 
as containing Pac-men rather than circles, and thus circles seem novel and worth more 
extended scrutiny. Taken together, these results indicate that early in development, chil-
dren are predisposed to learn shapes from their environments and then interpret their 
environment in terms of these learned shapes.

Move-Apart Event

Move-Together Event

Figure 9.2
Stimuli from Needham and Baillargeon (1998). Infants exposed to a cylinder juxtaposed with a rectangular box 
showed relatively long looking times (suggesting surprise) if one of the objects moved separately from the other, 
as depicted in the move-apart event in the top panel. Figure courtesy of Needham and Baillargeon.
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Perceptual Learning Via Unitization

Perceptual learning is powerful because it is not only early in the above three senses, but 
also, unlike a reflex, is task-dependent. This combination of properties allows perception 
to be both fast and useful. The nature and degree of perceptual learning is typically closely 
tied to the task, goals, and knowledge of the observer. Although perceptual learning may 
occur without awareness (Watanabe et al. 2001), it is more common for researchers to 
report learning that depends upon both the objective frequency and subjective importance 
of the physical feature (Sagi and Tanne 1994; Shiu and Pashler 1992). For example, alter-
ing the color of target objects in a visual search paradigm from training to transfer tasks 
does not influence performance unless the training task requires encoding of color (Logan 
et al. 1996). Our empirical research has been focused on the particular mechanisms by 
which perceptual processes are modified by experience and tasks. One result of category 
learning is to create perceptual units that combine stimulus components useful for the 
categorization. Such a process is one variety of the more general phenomenon of unitiza-
tion, by which single functional units are constructed that are triggered when a complex 
configuration arises (Goldstone 1998, 2000). In the next section, the complementary 
process, dimension differentiation, will be described. Although unitization and dimension 

PrefamiliarizationFamiliarization

A

B

Test Test

Looking Times39% 61% 58% 42%

Figure 9.3
When three- to four-month-old infants are familiarized with figures consisting of a complex polygon superim-
posed on a circle, they tend to look more at the three-quarter-circle “Pac-man” type of shape than at the full 
circle. However, when they are prefamiliarized with polygons superimposed with the three-quarters “Pac-man,” 
they tend to look more at the full circle.

Tommasi_09_Ch09.indd   168 10/28/2008   2:25:38 PM



L1

Learning to See and Conceive� 169

differentiation seem to be contradictory processes, we will argue on computational grounds 
that they reflect the same mechanism of determining useful perceptual building blocks for 
representing patterns.

Cattell (1886) invoked the notion of perceptual unitization to account for the advantage 
that he found for tachistoscopically presented words relative to nonwords. Unitization has 
also been posited in the field of attention, where researchers have claimed that shape 
components of often-presented stimuli with practice become processed as a single func-
tional unit (LaBerge 1973). Shiffrin and Lightfoot (1997) report evidence from the slopes 
relating the number of distracter elements to response time in a feature search task. When 
participants learned a conjunctive search task in which three line segments were needed 
to distinguish the target from distracters, impressive and prolonged decreases in search 
slopes were observed over twenty hour-long sessions. These prolonged decreases were 
not observed for a simple search task requiring attention to only one component. The 
authors concluded that conjunctive training leads to the unitization of the set of diagnostic 
line segments, resulting in fewer required comparisons.

Our own experiments (Goldstone 2000) have explored unitization from a complemen-
tary perspective. First, our experiments reflect our primary interest in the influence of 
category learning on unitization, under the hypothesis that a unit will tend to be created 
if the parts that make up the unit frequently co-occur, and if the unit is useful for deter-
mining a categorization. Second, we use a new method for analyzing response-time dis-
tributions to assess the presence of unitization.

Whenever the claim for the construction of new units is made, two objections must be 
addressed. First, perhaps the unit existed in people’s vocabulary before categorization 
training. Our stimuli are designed to make this explanation unlikely. Each unit to be sen-
sitized is constructed by connecting five randomly chosen curves. There are ten curves 
that can be sampled, yielding 105 possible different units. As such, if it can be shown that 
a subject can be sensitized to any randomly selected unit, then an implausibly large number 
of vocabulary items would be required under the constraint that all vocabulary items are 
fixed and a priori. The second objection is that no units need be formed; instead, people 
analytically integrate evidence from the five separate curves to make their categorizations. 
However, this objection will be untenable if participants, at the end of extended training, 
are faster at categorizing the units than would be expected by the analytic approach.

In our experiments the categorization task was designed so that evidence for five com-
ponents must be received before certain categorization responses are made. That is, it was 
a conjunctive categorization task. The stimuli and their category memberships are shown 
in figure 9.4.

Each of the letters refers to a particular segment of one “doodle.” Each doodle was 
composed of five segments, with a semicircle below the segments added to create a closed 
figure. To correctly place the doodle labeled “ABCDE” into category 1, all five compo-
nents, “A,” “B,” “C,” “D,” and “E,” must be processed. For example, if the right-most 
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component was not attended, then “ABCDE” could not be distinguished from “ABCDZ,” 
which belongs in category 2. Only the complete five-way conjunction suffices to accurately 
categorize “ABCDE.” If unitization occurs during categorization, then, with training, the 
stimulus “ABCDE” may become treated functionally like a single component. If this 
occurs, then participants should be able to quickly respond that this stimulus belongs to 
category 1. So a pronounced decrease in the time required to categorize the conjunctively 
defined stimulus “ABCDE” was taken as initial evidence for unitization.

For improvement in the conjunctive task to be taken as evidence for unitization, two 
important control conditions are necessary. First, it is important to show that tasks that do 
not require unitization do not show comparable improvements. To this end, a control task 
was included that allows participants to categorize the item “ABCDE” by attending to 
only a single component rather than a five-way conjunction. This was done by having 
category 2 contain only one of the five category 2 doodles shown in figure 9.4, randomly 
selected for each participant. This “One” (component) condition should not result in the 
same speed-up over training as the “All” (components) condition where five components 
must be attended. If it does, then the speed-up can be attributed to a simple practice effect 
rather than unitization. Second, it is important to show that stimuli that cannot be unitized 

Category 2Category 1

A B C D E

A B C D Z

A B C Y E

A B X D E

A W C D E

V B C D E

Figure 9.4
Stimuli used by Goldstone (2000). Each letter represents a particular stimulus segment, and each stimulus is 
composed of five segments. To categorize the item represented by “ABCDE” as belonging to Category 1, it is 
necessary to process information associated with each of the segments.
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also do not show comparable speed-ups. For this control condition, it was necessary to 
attend a five-way conjunction of components, but the ordering of the components within 
the stimulus was randomized. That is, “ABCDE” and “CEBDA” were treated as equiva-
lent. In this “Random” condition, a single template cannot serve to categorize the “ABCDE” 
stimulus and unitization should therefore not be possible.

The results from the experiment were suggestive of unitization. The results in figure 
9.5 reflect only the correct responses to the category 1 doodle “ABCDE.”

The horizontal axis shows the amount of practice over a 1.5-hour experiment. The 
condition where all components were necessary for categorization and where they were 
combined in a consistent manner to create a coherent image showed far greater practice 
effects than the others. This dramatic improvement suggests that the components are joined 
to create a single functional unit to serve categorization. Particularly impressive speed-ups 
were found when and only when unitization was possible and advantageous.

This paradigm also provides stronger evidence for unitization. The alternative to the 
unitization hypothesis is that responses in the “All” task are obtained by integrating evi-
dence from five separate judgments of the type required in the “One” task. In arguing 
against this analytic account, a highly efficient version of the analytic account was devised 
so that it could be observed whether it still predicted response times that were too slow. 
The first advantage given to the analytic model was fully parallel processing; “All” 
responses were made by combining five “One” responses, but evidence for these five 
“One” responses was assumed to be obtained simultaneously. Second, the analytic model 
was given unlimited capacity; identifying one component was not slowed by the need  
to identify another component. In obtaining predictions from this charitably interpreted 
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Figure 9.5
Results from Goldstone (2000). The most pronounced improvement was observed when all components were 
required for a categorization (“All”), and the components were always in the same positions (“Ordered”).
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analytic model, it is important to remember that the “All” task is a conjunctive task; to 
categorize ABCDE as a category 1 item with the required 95 percent categorization accu-
racy, all five components must be identified. Also, there is intrinsic variability in response 
times, even in the simple task where only one component must be identified. An analytic 
model of response times can be developed that predicts what the “All” task response-time 
distribution should be, given the “One” task distribution. After training, a distribution of 
response times in the “One” task can be empirically determined. To derive the analytic 
model’s predictions, one can randomly sample five response times from this distribution. 
The maximum of these five times, rather than the average, is selected because no response 
can be made to the conjunction until all components have been recognized. We can repeat 
this selection process several times to create a distribution of the maximums, and this 
yields the predicted response-time distribution for the “All” task. Fortunately, there is an 
easier, more formal way of obtaining the predicted distribution. The “One” task response-
time distribution is converted to a cumulative response-time distribution, and each point 
on this distribution is raised to the fifth power. If the probability of one component’s being 
recognized in less than 400 msec is 0.2, then the probability of all five components’ being 
recognized in less than 400 msec is 0.2 raised to the fifth power, assuming sampling 
independence.

A replication of the experiment shown in figure 9.4 was conducted that included the 
“Ordered All” and “One” tasks. Only four research assistants participated as participants, 
but unlike in the 1.5-hour experiment described previously, each participant was given 
fourteen hour-long training sessions. The results, shown in figure 9.6, are only for category 
1 responses on the final day of the experiment.

These results indicate violations of the analytic model. Naturally, the “One” task was 
the fastest (most shifted to the left) according to the cumulative response-time distribu-
tions. The analytic model’s predictions are shown by the curve labeled “One5,” which is 
obtained simply by raising each point on the “One” curve to the fifth power. For two of 
the four participants, the actual “All” distribution was faster than the analytic model’s 
predictions for all regions of the distribution. For all four participants, the fastest 30 percent 
of response times for the “All” task were faster than predicted by the analytic model, even 
though all participants were achieving accuracies greater than 95 percent. Although the 
advantage of the “All” over the “One5” distribution may not look impressive, the entire 
distributions were significantly different by a Kolmogorov-Smirnoff test for all partici-
pants except the participant C.H. Why were the violations of the analytic model restricted 
to the fast response times? A likely possibility is that a range of strategies was used for 
placing ABCDE into category 1 in the “All” task. On trials where a participant used the 
analytic strategy, the charitably interpreted analytic model would be expected to underes-
timate observed response times, given the implausibility of pure parallel, unlimited capac-
ity processing. However, on trials where participants used the single constructed unit to 
categorize ABCDE, violations of the analytic model are predicted. On average, the unit-
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based trials will be faster than the analytic trials. That is, if participants successfully use 
a single unit to categorize ABCDE then they will tend to do so quickly. If they cannot use 
this route, their response time will tend to be slower. Thus, if the fast and slow response 
times tend to be based on single units and analytic integration, respectively, then we would 
predict violations of the analytic model to be limited to, or more pronounced for, the fast 
response times.

In light of these results, we concluded that category learning probably created new 
perceptual units. Large practice effects were found if and only if stimuli were unitizable 
(the first experiment), and responses after fourteen hours of training were faster for con-
junctively defined categories than predicted by a charitably interpreted analytic model. 
The results shown in figure 9.6 only violate the analytic model if negative dependencies 
or independence is assumed between the five sampled response times that make up one 

600 900300 1200 1500 1800 2100600 9003000 1200 1500 1800 2100

RT RT

One All One5

C.H.A.H.

D.M. N.T.

1

.8

.6

.4

.2

0

1

.8

.6

.4

.2

0

Figure 9.6
The cumulative response time distributions for the four participants taken from the last session of the experiment. 
The “One” and “All” distributions were empirically obtained. The “One5” distribution is obtained by raising 
each point along the “One” distribution to the fifth power, and represents the analytic model’s predicted cumula-
tive distribution for the “All” task. Violations of this analytic model occur when the “All” task’s distribution is 
shifted to the left of the analytic model’s distribution. Such violations occur for the fastest half of response times 
for all four participants (significantly so for all participants except C.H.).
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“All” judgment. Although it is beyond the scope of this chapter, we also have evidence 
for violations of the analytic model for classes of positive dependencies, using Fourier 
transformations to deconvolve shared input/output processes from the One task response-
time distribution (Goldstone 2000; Smith 1990).

There is still a remaining question: Exactly how do people become so fast at categoriz-
ing ABCDE in the “All” task? Two qualitatively different mechanisms could account for 
the pronounced speed-up of the conjunctive categorization: a genuinely holistic match 
process to a constructed unit, or an analytic model that incorporates interactive facilitation 
among the component detectors. According to a holistic match process, a conjunctive 
categorization is made by comparing the image of the presented item to an image that has 
been stored over prolonged practice. The stored image may have parts, but either these 
parts are arbitrarily small or they do not play a functional role in the recognition of the 
image.

There is evidence supporting the gradual development of configural features. Neuro-
physiological findings suggest that some individual neurons represent familiar conjunc-
tions of features (Perrett and Oram 1993; Perrett et al. 1984), and that prolonged training 
can produce neurons that respond to configural patterns (Logothetis et al. 1995). However, 
our results could also arise if detecting one component of “ABCDE” facilitates detection 
of other components (Townsend and Wenger 2004). In either case, the process is appro-
priately labeled “unitization” in that the percepts associated with different components are 
closely coupled. In fact, an interactive facilitation mechanism could be seen as the mecha-
nism that implements holistic unit detection at a higher functional level of description.

Perceptual Learning via Differentiation

New perceptual representations can be created by chunking together elements that were 
previously psychologically separated in a process of unitization, and the converse process 
also occurs. This second process is dimension differentiation, according to which dimen-
sions that are originally psychologically fused become separated and isolated. It is useful 
to contrast dimension differentiation from the more basic learning process of learning to 
selectively attend to one psychological dimension of stimulus. Selective attention assumes 
that the different dimensions that make up a stimulus can actually be individually attended. 
In his classic research on stimulus integrality and separability, Garner (1976, 1978) argues 
that stimulus dimensions differ in how easily they can be isolated or extracted from each 
other. Dimensions are said to be separable if it is possible to attend to one of the dimen-
sions without attending to the other. Size and brightness are classic examples of separable 
dimensions; making a categorization on the basis of size is not significantly slowed if there 
is irrelevant variation on brightness. Dimensions are integral if variation along an irrele-
vant dimension cannot be ignored when trying to attend a relevant dimension. The classic 
examples of integral dimensions are saturation and brightness, where saturation is related 
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to the amount of white mixed into a color, and brightness is related to the amount of light 
coming off of a color. For saturation and brightness, it is difficult to attend to only one of 
the dimensions (Burns and Shepp 1988; Melara et al. 1993).

From this work distinguishing integral from separate dimensions, one might conclude 
that selective attention can proceed with separable but not integral dimensions. However, 
one interesting possibility is that category learning can, to some extent, change the status 
of dimensions, transforming dimensions that were originally integral into more separable 
dimensions. Experience may change the underlying representation of a pair of dimensions 
such that they come to be treated as relatively independent and noninterfering sources of 
variation that compose an object. Seeing that stimuli in a set vary along two orthogonal 
dimensions may allow the dimensions to be teased apart and isolated, particularly if the 
two dimensions are differentially diagnostic for categorization. There is developmental 
evidence that dimensions that are easily isolated by adults, such as the brightness and size 
of a square, are treated as fused for four-year-old children (Kemler and Smith 1978; Smith 
and Kemler 1978). It is relatively difficult for children to decide whether two objects are 
identical on a particular dimension, but relatively easy for them to decide whether they 
are similar across many dimensions (Smith 1989). For example, children seem to be dis-
tracted by shape differences when they are instructed to make comparisons based on color. 
Adjectives that refer to single dimensions are learned by children relatively slowly com-
pared to nouns (Smith et al. 1997).

The developmental trend toward increasingly differentiated dimensions is echoed by 
adult training studies. Under certain circumstances, color experts (art students and vision 
scientists) are better able to selectively attend to dimensions (e.g., hue, chroma, and value) 
that make up color than are nonexperts (Burns and Shepp 1988). Goldstone (1994) has 
shown that people who learn a categorization in which saturation is relevant and brightness 
is irrelevant (or vice versa) can learn to perform the categorization accurately, and as a 
result of category learning, they develop a selectively heightened sensitivity at making 
discriminations of saturation, relative to brightness. That is, categorization training that 
makes one dimension diagnostic and another dimension nondiagnostic can serve to split 
apart these dimensions, even if they are traditionally considered to be integral dimensions. 
These training studies show that in order to know how integral two dimensions are, one 
has to know something about the observer’s history.

Goldstone and Steyvers (2001) used a category learning and transfer paradigm to 
explore whether genuinely arbitrary dimensions can become isolated from each other. Our 
subjects first learned to categorize a set of sixteen faces into two groups by receiving 
feedback from a computer, and then were transferred to a second categorization task. The 
stimuli varied along two arbitrary dimensions, A and B, that were created by morphing 
between randomly paired faces (Steyvers 1999). We created a set of stimuli with no pre-
ferred dimensional axes by assigning sixteen faces to coordinates that fall on a circle in 
the abstract space defined by dimensions A and B. To this end, A variable D was created 
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that was assigned sixteen different values, from 0 to 360, in 22.5-degree steps. For each 
value assigned to D, the dimension A value for a face was equal to cosine (D) and the 
dimension B value was sine(D). The end result, shown in figure 9.7, is a set of faces that 
are organized on a circle with no privileged dimensional axes suggested by the set of 
faces.

With these faces, Goldstone and Steyvers asked whether the organization of the faces 
into dimensions could be influenced by the required categorization. Subjects were shown 
faces, asked to categorize them, and then received feedback on the correctness of their 
categorization. The categorization rules all involved splitting the sixteen faces into two 

90°

45°

Figure 9.7
Stimuli from Goldstone and Steyvers (2001), experiment 3. The proportions of two randomly paired faces are 
negatively correlated such that the more of face 1 is present, the less of face 2 there will be. This negative cor-
relation establishes the dimension on the X-axis, and a similar negative correlation between two other faces 
establishes the Y-axis dimension. A set of circularly arranged faces was created by varying degrees from 0 to 
360, and assigning the face a value on the X-axis dimension based on the cosine of the degrees, and assigning 
the face’s Y-axis value based on the sine of the degrees. Subjects learned two successive categorizations involv-
ing the faces. Each categorization split the faces into two equal groups with a straight line dividing them. The 
two category boundaries given to a subject were related to each other by either 45 or 90 degrees.
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equal piles using straight lines such as those shown in figure 9.7. Each subject was given 
categorization training with one classification rule and then was transferred to a second 
categorization task governed by a different rule. The critical experimental manipulation 
was whether the final categorization rule involved a rotation of 45 or 90 degrees relative 
to the initial rule. Given that the initial categorization rules were randomly selected, the 
only difference in the 45- and 90-degree rotation conditions was whether the category 
boundary was shifted by two or four faces. When the category boundary was shifted by 
two faces in the 45-degree condition, the labels could either be preserved (six faces 
assigned to the same category) or reversed (two faces assigned to the same category), but 
the category boundary itself was the same for these two conditions. The results, shown  
in “Whole Face Dimensions” columns of figure 9.8, indicate that in the second phase of 
category learning, there was an advantage for the 90- over 45-degree rotation condition 
in these integral dimension conditions.

This is somewhat surprising, given that categorizations related by 90 degrees are com-
pletely incompatible in regard to their selective-attention demands. The dimension that 
was originally completely irrelevant becomes completely relevant. In the 45-degree condi-
tion, the originally relevant dimension is at least partially relevant later. However, catego-
rizations related by 90 degrees do have an advantage as far as dimensional organization. 
The relevant dimensions for the two categorizations are compatible with each other in the 
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Figure 9.8
The 90-degree-rotation condition produced better transfer on the final categorization than the 45-degree condi-
tion, but only for overlapping face dimensions such as those in figure 9.7, and not spatially separated dimensions 
such as eyes and mouth.
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sense of relying on independent sources of variation. For example, acquiring one dimen-
sion in figure 9.7 is compatible with later acquiring the 90-degree rotation of this dimen-
sion, because both are independent dimensions that can coexist without interference.

By analogy, categorizing rectangles on the basis of height is compatible with categoriz-
ing them on the basis of width because these two dimensions can each be separately reg-
istered and do not interfere with each other. Someone who thought about rectangles in 
terms of height would also be likely to think about them in terms of width. Organizing 
rectangles in terms of shape (ratio of width to height) and area is an alternative dimensional 
organization. A person who thinks in terms of rectangle shape might also be expected to 
think in terms of area because this is the remaining dimension along which rectangles vary 
once shape has been extracted. However, organizing rectangles in terms of height is 
incompatible with organizing them in terms of area because area is partially dependent on 
height. Thus, categorization rules separated by 90 degrees are inconsistent with respect to 
their selective attention demands because the dimension that was originally attended must 
be ignored and vice versa. However, the rules are consistent with respect to their dimen-
sional organization of stimuli.

Our account for the advantage of a 90- over 45-degree rule rotation is that only the 
former rotation maintains a compatible dimensional interpretation of the stimuli across the 
two categorizations. If the relatively good transfer in the 90-degree rotation condition is 
because the two categorizations encourage the same differentiation of the faces into dimen-
sions rather than crosscutting dimensions, then we should not expect the 90-degree rotation 
condition to produce better performance when dimension differentiation is not required—
that is, with more separable stimuli. This is exactly what was found when we created 
dimensions by morphing select face parts rather than entire dimensions. One dimension 
morphed the eyes from one face to the eyes of another face, and the other dimension 
morphed mouths. These dimensions are more separable than those shown in figure 9.7 
because people can attend to one dimension without showing much interference due to 
irrelevant variation on the other dimension (Garner 1976). With these more separable 
dimensions, participants should be able to selectively attend one dimension without as 
much need to differentiate fused dimensions. As shown by the right panel of figure 9.8, 
with these dimensions, the advantage for the 90-degree rotation was no longer found. This 
again suggests that the 90-degree advantage is due to participants’ learning to isolate two 
originally fused dimensions from each other, and transferring this knowledge.

This conclusion is controversial. Op de Beeck and his colleagues (2003) created stimuli 
composed of novel, spatially overlapping dimensions. The shapes in figure 9.9 were 
created by combining seven sinusoidal functions (each with three parameters: frequency, 
phase, and amplitude), referred to individually as radial frequency components (RFCs), 
into a single, complex curve and then bending these to create closed contours.

While five of the seven RFCs remained fixed, two were chosen to have their amplitudes 
varied to define a two-dimensional space. Op de Beeck et al. (2003) showed that these 

Tommasi_09_Ch09.indd   178 10/28/2008   2:25:40 PM



L1

Learning to See and Conceive� 179

dimensions are relatively integral. With these stimuli there was no evidence that catego-
rization via a horizontal or vertical boundary led to greater improvement in discriminabil-
ity along the category-relevant dimension relative to the irrelevant dimension. On the basis 
of this result, they argued that category learning is only capable of altering weights to 
already separable dimensions, but not of making integral dimensions more separable.

Our dimension-differentiation account is not forced to predict that differentiation will 
occur for any set of dimensions within any set length of categorization training. Our account 
holds that some relatively integral dimensions can become differentiated, not that every 
arbitrary pair of indistinguishable dimensions can be well separated by categorization 
learning. Still, we found the RFC stimuli compelling, and were consequently interested in 
whether an improved training regime could lead to the differentiation of the RFC compo-
nents (Hockema et al. 2005). In particular, we controlled the order of training trials to start 
with easy categorizations—shapes far from the category boundary—and gradually increase 
the difficulty to include shapes nearer to the boundary. Echoing classic results showing 
highly efficient learning with easy-to-hard training regimes (Mackintosh 1974), this train-
ing allowed our participants to eventually make categorizations that would have proved 
too difficult to learn in initial training. This training effectively challenged the perceptual 
system to adapt in order to support the categorization. After training, participants were 

Figure 9.9
Stimuli used by Hockema et al. (2005), based on stimuli first developed by Op de Beeck et al. (2003), composed 
of two overlapping and integral dimensions. Looking from left to right, the amplitude of one radial frequency 
component (RFC) of the shapes is increased. Looking from top to bottom, a second RFC component is varied. 
These stimuli were purposefully blurred so that participants could not use local pixel features on the contour 
edges that might be correlated with the diagnostic dimensions. With these blurred stimuli participants needed to 
pay attention to relatively global aspects of the shape-based dimensions.
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better able to discriminate between stimuli near the categorization boundary that varied 
along the relevant, compared to irrelevant, dimension. This result indicates the kind of 
selective sensitization of a single dimension for which Op de Beeck and colleagues (2003) 
failed to find evidence. Further experiments showed that dynamic animations, varying on 
single dimensions, also successfully trained selective sensitization for an originally integral 
pair of dimensions. In light of these results, our current claim is that not all categorization 
training that would benefit from dimension differentiation will result in the desired differ-
entiation. However, if care is taken to create training situations that push the perceptual 
system beyond its original capacity, then dimensions that were originally psychologically 
fused are not necessarily doomed to remain that way. Perceptual learning involves learning 
to selectively attend to relevant dimensions, but can also involve establishing what dimen-
sions are available for selective attention in the first place. People not only learn appropriate 
weights for dimensions but also learn how to learn attentional weights for dimensions.

A Computational Reconciliation

Unitization involves the construction of a single functional unit out of component parts. 
Dimension differentiation divides wholes into separate component dimensions. There is 
an apparent contradiction between experience creating larger “chunks” via unitization and 
dividing an object into more clearly delineated components via differentiation. This incon-
gruity can be transformed into a commonality at a more abstract level. Both mechanisms 
depend on the requirements established by tasks and stimuli. Objects will tend to be 
decomposed into their parts if the parts reflect independent sources of variation, or if the 
parts differ in their relevancy. Parts will tend to be unitized if they co-occur frequently, 
with all parts indicating a similar response. Thus, unitization and differentiation are both 
processes that build appropriately sized representations for the tasks at hand.

We have developed computational models to show how concept learning can lead to 
learning new perceptual organizations via unitization and differentiation (Gerganov et al. 
2007; Goldstone 2003). In this pursuit, we have been drawn to neural networks that possess 
units that intervene between inputs and outputs and are capable of creating internal repre-
sentations. For the current purposes, these intervening units can be interpreted as learned-
feature detectors, and represent an organism’s acquired perceptual vocabulary. Just as we 
perceive the world through the filter of our perceptual system, so the neural network does 
not have direct access to the input patterns, but rather only has access to the detectors that 
it develops.

The conceptual and perceptual learning by unitization and segmentation model, or 
CPLUS, is given a set of pictures as inputs and produces as output a categorization of each 
picture. Along the way to this categorization, the model comes up with a description of how 
the picture is segmented into pieces. The segmentation that CPLUS creates will tend to 
involve parts that (1) obey the Gestalt laws of perceptual organization by connecting object 
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parts that have similar locations and orientations, (2) occur frequently in the set of presented 
pictures, and (3) are diagnostic for the categorization. For example, if the five input pictures 
of figure 9.10 are presented to the network and labeled as belonging to category A or cate-
gory B, then originally random detectors typically become differentiated as shown.

This adaptation of the detectors reveals three important behavioral tendencies. First, 
detectors are created for parts that recur across the five objects, such as the lower square 
and upper rectangular antenna. Thus, the first input picture on the left will be represented 
by combining responses of the square and rectangular antenna detectors. Second, single, 
holistic detectors are created for objects such as the rightmost input picture that do not 
share any large pieces with other inputs. In this way, the model can explain how the same 
learning process unitizes complex configurations and differentiates other inputs into pieces. 
Third, the detectors act as filters that lie between the actual inputs and the categories. The 

A B A B B

Input Pictures

Learned Detectors

Category UnitsBA

Figure 9.10
Sample output from the CPLUS (conceptual and perceptual learning by unitization and segmentation) model. 
After being exposed to the input pictures and their categorizations, the neural network creates detectors that can 
be assembled, like building blocks, to recreate the inputs. The detectors are learned at the same time that they 
are associated to categories. Solid lines represent excitatory connections; dashed lines represent inhibitory 
connections.
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learned connections between the acquired detectors and the categories are shown by thick 
solid lines for positive connections and dashed lines for negative connections. The network 
learns to decompose the leftmost input picture into a square and rectangular antenna, but 
also learns that only the rectangular antenna is diagnostic for categorization, predicting 
that category A is present and that category B is not.

Although the mathematical details of the model are described elsewhere (Goldstone 
2003), it is possible to give a functional description of the basic workings of the model 
that allow it to both separate stimuli into useful parts and create larger units. The heart of 
CPLUS is a competitive learning process (Rumelhart and Zipser 1985) in which detectors 
compete for the “right” to adapt toward randomly presented input patterns. In competitive 
learning algorithms, detectors start out as homogenous and undifferentiated. As inputs are 
presented, the detector that is most similar to a presented input adjusts its weights so that 
it is even more similar to the input, and inhibits the other detectors from learning to adapt 
toward the input. This leaves the other detectors available to become specialized for a 
different class of patterns. The originally homogenous detectors will be differentiated over 
time, and will split the input patterns into two categories. For another example of how 
small physical differences between detectors can developmentally snowball into substan-
tially different modules, see Johnson (2000; see also chapter 15, this volume).

Competitive learning is typically applied to unsupervised categorization, in which case 
it takes entire patterns as input, and sorts these complete, whole input patterns into separate 
categories. However, CPLUS applies competitive learning to the problem of segmentation, 
by taking a single input pattern and sorting the pieces of the pattern into separate groups. 
Consistent with competitive learning, the pixel-to-detector weight that is closest to the 
pixel’s actual value will adapt its weight toward the pixel’s value, and inhibit other detec-
tors from so adapting. This technique, by itself, segments a pattern into complementary 
parts. If one detector becomes specialized for a pixel, the other detector does not. Unfor-
tunately, each detector can become specialized for a random set of pixels, rather than a 
coherent, psychologically plausible segmentation.

To create psychologically plausible segmentations, we modify the determination of 
winners. Topological constraints on detector creation are incorporated by two mecha-
nisms: (1) input-to-detector weights “leak” to their neighbors by an amount proportional 
to their proximity in space, and (2) input-to-detector weights also spread to each other as 
a function of their orientation similarity, defined by the inner product of four orientation 
filters. The first mechanism produces detectors that tend to respond to cohesive, contiguous 
regions of an input. The second mechanism produces detectors that follow the principle 
of good continuation, dividing the figure X into two crossing lines rather than two kissing 
Vs, because the two halves of a diagonal line will be linked by their common orientation. 
Thus, if a detector wins for pixel Y (meaning that the detector receives more activation 
when pixel Y is on than any other detector), then the detector will also tend to handle 
pixels that are close to, and have similar orientations to, pixel Y. For an alternative 
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approach to segmentation that uses synchronized oscillations rather than architecturally 
separated detectors to represent segmentations, see Mozer et al. (1992).

As described thus far, the algorithm is completely unsupervised, creating detectors as 
a function of statistical dependencies and bottom-up perceptual properties of the set of 
input images. However, much of the experimental evidence previously reviewed indicates 
a strong influence of learned categories on acquired perceptual encodings. This influence 
is incorporated into CPLUS by biasing diagnostic detectors to win the competition to learn 
the pattern. The diagnosticity of a detector is assumed to be directly proportional to the 
weight from the detector to the category label associated with an input pattern. The input-
to-detector weights do not have to be set before the weights from detectors to categories 
are learned. In fact, in the actual operation of CPLUS, the detectors adapt at the same time 
that they become associated with categories to be learned. This core assumption of CPLUS 
allows it to create detectors only when they are useful for an important categorization 
rather than having to postulate a large initial set of detectors just in case one is needed for 
a future categorization task.

CPLUS differs from most other models of categorization in that it prominently features 
a perceptual segmentation process. Its ability to flexibly organize a pattern into learned 
parts is a large advantage to the extent that the world consists of objects that have parts 
that recur many times across many objects. CPLUS is inherently a componential model 
in which objects are broken down into parts during perception, and these parts are differ-
entially associated with categories. Admittedly, there is little advantage to creating com-
positional representations for the five input pictures in figure 9.10. They can be represented 
by five holistic detectors just as effectively as by the shown componential representation. 
However, if we had a set of objects that each had five pieces, and each of those pieces 
had four variants, then the holistic strategy would require 1,024 (45) detectors whereas 
CPLUS requires only 20. In a world where objects are built from elementary blocks, a 
perceptual system that can take advantage of this fact stands to benefit considerably, both 
in terms of representational efficiency and generative flexibility (see also Griffiths and 
Ghahramani, 2006). A categorization advantage is also accrued when the building blocks 
are diagnostic for needed categories.

Recently we have incorporated even greater plasticity in the creation of feature detectors 
in CPLUS. The original version of CPLUS incorporated a hard-wired pressure to create 
detectors for stimulus elements that are close and create smoothly varying curves. Gerga-
nov and colleagues (2007) have explored the possibility that these constraints themselves 
may be learned rather than hard-wired. If a set of input patterns mostly contains connected 
and smooth elements, then a neural network can internalize these regularities as it devel-
ops. Other researchers have proposed that visual detectors can be created by a system that 
simply internalizes statistical regularities extracted from a large set of natural photographic 
images (Olshausen and Field 1996); however, their detectors were assumed to adapt on 
evolutionary time scales, and hence be built in for any modern individual. In contrast, the 
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newer version of CPLUS assumes that the process of learning constraints from an environ-
ment can take place in an individual’s own lifetime. The empirical basis for this contention 
stems from developmental studies suggesting that some perceptual constraints appear to 
be learned rather than innate (Quinn and Bhatt 2006; Sheya and Smith 2006). Learning 
without constraints is impossible, but the exciting possibility still remains that constraints 
themselves can be learned.

Conclusion

The previously described neural network builds detectors at the same time that it builds 
connections between the detectors and categories. The psychological implication is that 
our perceptual systems do not have to be set in place before we start to use them. The 
concepts we need can and should influence the perceptual units we create. The influence 
of these concepts comes in at least two forms: unitizing originally individuated elements, 
and differentiating originally fused elements. Rather than viewing unitization and differ-
entiation as contradictory, they are best viewed as aspects of the same process that bundles 
stimulus components if they diagnostically co-occur and separates these bundles from 
other statistically independent bundles. Under this conception, learning new features or 
detectors consists in learning how to carve a stimulus into useful components.

One of the most powerful ideas in cognitive science has been the notion that flexible 
cognition works by assembling a fixed set of building blocks into novel arrangements. 
Many of the most notable discoveries in cognitive science have involved finding these 
kinds of compositional encodings. In linguistics, phonemes have been represented by the 
presence or absence of fewer than twelve features such as voiced, nasal, and strident 
(Jakobson et al. 1963). Scenarios, such as ordering food in a restaurant, have been repre-
sented by Schank (1972) in terms of a set of twenty-three primitive concepts such as 
physical-transfer, propel, grasp, and ingest. In the field of object recognition, Biederman 
(1987) proposed a set of thirty-six geometric shapes such as wedge and cylinder to be used 
for representing objects such as telephones and flashlights. We are in complete agreement 
with these proposals in terms of the cognitive and computational advantage of creating 
representations by composing elements. The only difference, but a critical one, is that we 
believe these elements can be flexibly created during experience with an environment, 
rather than being fixed.

We have argued that the concepts we learn can reach down and influence the very per-
ceptual descriptions that ground the concepts. This interactive cycle is figuratively shown 
in figure 9.11.

A person creates perceptual building blocks from his or her experiences in the world. 
Then, the person’s subsequent experience of this same world is influenced by these learned 
building blocks. Naturally, cases of experience-induced hallucinations of figure 9.11’s 
extremity are rare (but possible; Grossberg 2000), but this is a graphic, degenerate case 
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of the everyday phenomenon in which our perceptions and conceptions are tightly coupled 
(Wisniewski and Medin 1994). Hopefully, the CPLUS model provides some reassurance 
that this interactive loop between perception and conception need not be viciously circular. 
In fact, it is because our experiences are necessarily based on our perceptual systems that 
these perceptual systems must be shaped so that our experiences are appropriate and useful 
for dealing with our world.
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