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ABSTRACT

Perceptual learning involves relatively long-lasting changes to an organ-
ism’s perceptual system that improve its ability to respond to its environ-
ment. Four mechanisms of perceptual learning are discussed: attention
weighting, imprinting, differentiation, and unitization. By attention weight-
ing, perception becomes adapted to tasks and environments by increasing the
attention paid to important dimensions and features. By imprinting, recep-
tors are developed that are specialized for stimuli or parts of stimuli. By dif-
ferentiation, stimuli that were once indistinguishable become psychologi-
cally separated. By unitization, tasks that originally required detection of
several parts are accomplished by detecting a single constructed unit repre-
senting a complex configuration. Research from cognitive psychology, psy-
chophysics, neuroscience, expert/novice differences, development, com-
puter science, and cross-cultural differences is described that relates to these
mechanisms. The locus, limits, and applications of perceptual learning are
also discussed.
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INTRODUCTION

The field of perceptual learning has changed significantly since the last Annual
Review of Psychology chapter—Eleanor Gibson’s 1963 review entitled “Per-
ceptual Learning” [reprinted and reappraised by Gibson (1991)]—appeared.
Eleanor and James Gibson’s ecological approach to perception, with its em-
phasis on the direct perception of information from the world, has had a pro-
found influence on the direction of the entire field. By this approach, percep-
tual learning consists of extracting previously unused information (Gibson &
Gibson 1955). Identifying what external properties are available to be picked
up by people is one of the major research goals. The ecological approach to
perceptual learning continues to offer a fertile research program in develop-
mental psychology (Pick 1992) and event perception (Bingham et al 1995,
Reed 1996). The focus of the current review will be quite different from a di-
rect perception perspective. The research reviewed here will be predominantly
concerned with the internal mechanisms that drive perceptual learning and me-
diate between the external world and cognition. The bulk of this review will be
organized around proposals for specific mechanisms of perceptual adaptation.

Perceptual learning involves relatively long-lasting changes to an organ-
ism’s perceptual system that improve its ability to respond to its environment
and are caused by this environment. As perceptual changes become more
ephemeral, the inclination is to speak of adaptation (Helson 1948), attentional
processes (Nosofsky 1986), or strategy shifts rather than perceptual learning.
If the changes are not due to environmental inputs, then maturation rather than
learning is implicated. Perceptual learning may occasionally result in worse per-
formance in perceptual tasks, as is the case with Samuel’s (1981) finding that
experience with spoken words hinders subjects’ decisions about whether they
heard white noise or noise combined with speech sounds. Even in this case, ex-
perience with words probably increases people’s ability to decipher noisy
speech, the task with which they are most often confronted. The premise of this
definition is that perceptual learning benefits an organism by tailoring the pro-
cesses that gather information to the organism’s uses of the information.

One of the theoretical and empirical challenges underlying the above defi-
nition is to distinguish between perceptual and higher-level, cognitive learn-
ing. In fact, Hall (1991) has persuasively argued that many results that have
been explained in terms of perceptual learning are more parsimoniously de-
scribed by changes involving the strengthening and weakening of associa-
tions. Several strategies have been proposed for identifying perceptual, rather
than higher-level, changes. Under the assumption that perception involves the
carly stages of information processing, one can look for evidence that experi-
ence influences early processes. For example, subjective experience not only
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alters the perceived colors of familiar objects (Goldstone 1995) but apparently
also exerts an influence on color perception before the perceptual stage that
creates color after-images has completed its processing (Moscovici & Person-
naz 1991). Likewise, experience with the silhouettes of familiar objects exerts
an influence before figure/ground segregation is completed (Peterson & Gib-
son 1994). A second approach to identifying perceptual changes is to observe
the time course of the use of particular types of information. For example, on
the basis of priming evidence, Sekuler et al (1994) argue that knowledge about
what an occluded object would look like if it were completed influences proc-
essing after as little as 150 ms. This influence is sufficiently early to typically
be counted as perceptual processing. Neurological evidence can provide con-
vergent support to timing studies. For example, practice in discriminating
small motions in different directions significantly alters electrical brain poten-
tials that occur within 100 ms of the stimulus onset (Fahle & Morgan 1996).
These electrical changes are centered over the primary visual cortex, suggest-
ing plasticity in early visual processing. Karni & Sagi (1991) find evidence,
based on the specificity of training to eye (interocular transfer does not occur)
and retinal location, that is consistent with early, primary visual cortex adapta-
tion in simple discrimination tasks. Similarly, classical conditioning leads to
shifts of neuronal receptive fields in primary auditory cortex toward the fre-
quency of the rewarded tone (Weinberger 1993). In fact, training in a selective
attention task may produce differential responses as early as the cochlea, the
neural structure that is connected directly to the eardrum via three small bones
(Hillyard & Kutas 1983). In short, there is an impressive amount of converging
evidence that experimental training leads to changes to very early stages of in-
formation processing.

Of the many interesting questions regarding perceptual learning (“What is
learned?,” “How long does learning take and last?,” and “How widely does
learning transfer?”), this review is organized around “How does learning oc-
cur?” Consequently, a wide range of fields that investigate mechanisms under-
lying perceptual learning will be surveyed. Evidence from developmental psy-
chology is very important because many of the most dramatic changes to hu-
man perceptual systems occur within the first seven years of life (Aslin &
Smith 1988). Neuroscience provides concrete mechanisms of adaptation, and
the field of neural plasticity has recently experienced tremendous growth
(Kolb 1995, McGaugh et al 1995). Analyses of expertise and cross-cultural
comparisons assess the perceptual impact of extended environmental influ-
ences. Researchers in computer science have made valuable contributions to
our understanding of human psychology by describing functional algorithms
for adaptation in networks involving many interacting units. In many cases,
perceptual changes that have been empirically observed through studies of ex-
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perts, laboratory training studies, and different cultures are given concrete ac-
counts by computational and neural models.

MECHANISMS OF PERCEPTUAL LEARNING

Perceptual learning is not achieved by a unitary process. Psychophysicists
have distinguished between relatively peripheral, specific adaptations and
more general, strategic ones (Doane et al 1996, Sagi & Tanne 1994), and be-
tween quick and slow perceptual learning processes (Karni & Sagi 1993).
Cognitive scientists have distinguished between training mechanisms driven
by feedback (supervised training) and those that require no feedback, instead
operating on the statistical structure inherent in the environmentally supplied
stimuli (unsupervised training). Organizing perceptual learning in terms of
mechanisms rather than domains results in some odd couplings (linking, for
example, neuroscientific and cross-cultural studies bearing on perceptual dif-
ferentiation), but has the advantage of connecting phenomena that are deeply
related and may inform each other.

Attentional Weighting

One way in which perception becomes adapted to tasks and environments is by
increasing the attention paid to perceptual dimensions and features that are im-
portant, and/or by decreasing attention to irrelevant dimensions and features.
A feature is a unitary stimulus element, whereas a dimension is a set of linearly
ordered features. “3 centimeters” and “red” are features; length and color are
dimensions.

Attention can be selectively directed toward important stimulus aspects at
several different stages in information processing. Researchers in animal
learning and human categorization have described shifts toward the use of di-
mensions that are useful for tasks (Nosofsky 1986) or have previously been
useful (Lawrence 1949). Lawrence describes these situations as examples of
stimulus dimensions “acquiring distinctiveness” if they have been diagnostic
in predicting rewards. Nosofsky describes attention shifts in terms of psycho-
logically “stretching” dimensions that are relevant for categorizations. During
category learning, people show a trend toward deemphasizing preexperimen-
tally salient features, and emphasizing features that reliably predict experi-
mental categories (Livingston & Andrews 1995). The stimulus aspects that are
selectively attended may be quite complex; even pigeons can learn to selec-
tively attend to the feature “contains human” in photographs (Herrnstein
1990). In addition to important dimensions acquiring distinctiveness, irrele-
vant dimensions also acquire equivalence, becoming less distinguishable
(Honey & Hall 1989). For example, in a phenomenon called “latent inhibi-
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tion,” stimuli that are originally varied independently of reward are harder to
later associate with reward than those that are not initially presented at all
(Lubow & Kaplan 1997, Pearce 1987). Haider & Frensch (1996) find that im-
provements in performance are frequently due to reduced processing of irrele-
vant dimensions.

The above studies illustrate shifts in the use of dimensions as a function of
their task relevance, but these shifts may be strategic choices rather than per-
ceptual in nature. One source of evidence that they are not completely volun-
tary is that attentional highlighting of information occurs even if it is to the det-
riment of the observer. When a letter consistently serves as the target in a de-
tection task and then later becomes a distractor—a stimulus to be ignored—it
still automatically captures attention (Shiffrin & Schneider 1977). The con-
verse of this effect, negative priming, also occurs: targets that were once dis-
tractors are responded to more slowly than never-before-seen items (Tipper
1992). In the negative priming paradigm, the effect of previous exposures of
an item can last upward of two weeks (Fox 1995), suggesting that a relatively
permanent change has taken place.

CATEGORICAL PERCEPTION A phenomenon of particular interest for atten-
tional accounts of perceptual adaptation is categorical perception. According
to this phenomenon, people are better able to distinguish between physically
different stimuli when the stimuli come from different categories than when
they come from the same category (Calder et al 1996; see Harnad 1987 for sev-
eral reviews of research). The effect has been best documented for speech pho-
neme categories. For example, Liberman et al (1957) generated a continuum of
equally spaced consonant-vowel syllables going from /be/ to /de/. Observers
listened to three sounds—A followed by B followed by X—and indicated
whether X was identical to A or B. Subjects performed the task more accu-
rately when syllables A and B belonged to different phonemic categories than
when they were variants of the same phoneme, even when physical differences
were equated.

There is evidence that some categorical perception effects are not learned
but are either innate or a property of the acoustical signal itself. Infants as
young as 4 months showed categorical perception for speech sounds (Eimas et
al 1971), and even chinchillas (Kuhl & Miller 1978) and crickets (Wyttenbach
et al 1996) show categorical perception effects for sound.

Still, recent evidence has indicated that sound categories, and categorical
perception more generally, are subject to learning (Lively et al 1993). Whether
categorical perception effects are found at particular physical boundaries de-
pends on the listener’s native language. In general, a sound difference that
crosses the boundary between phonemes in a language will be more dis-
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criminable to speakers of that language than to speakers of a language in which
the sound difference does not cross a phonemic boundary (Repp & Liberman
1987, Strange & Jenkins 1978). Laboratory training on the sound categories of
a language can produce categorical perception among speakers of a language
that does not have these categories (Pisoni et al 1982). Expert musicians, but
not novices, show a pronounced categorical perception effect for relative pitch
differences, suggesting that training was instrumental in sensitizing bounda-
ries between semitones (Burns & Ward 1978, Zatorre & Halpern 1979). A vis-
ual analog exists: faces for which subjects are “experts,” familiar faces, show
categorical perception (increased sensitivity to differences at the half-way
point between the faces) as one familiar face is transformed into another famil-
iar face; however, no categorical perception is found for unfamiliar faces
(Beale & Keil 1995).

There are several ways that physical differences between categories might
become emphasized relative to within-category differences. In support of the
possibility that people lose their ability to make within-category discrimina-
tions, very young infants (2 months old) show sensitivity to differences be-
tween speech sounds that they lose by the age of 10 months (Werker & La-
londe 1988, Werker & Tees 1984). This desensitization only occurs if the dif-
ferent sounds come from the same phonetic category of their native language.
However, given the difficulty in explicitly instructing infants to respond to
physical rather than phonetic differences between sounds, these results should
be conservatively interpreted as showing that physical differences that do not
make a functional difference to children become perceptually or judgmentally
deemphasized. Laboratory experiments by Goldstone (1994) have suggested
that physical differences between categories become emphasized with train-
ing. After learning a categorization in which one dimension was relevant and a
second dimension was irrelevant, subjects were transferred to same/different
judgments (“Are these two squares physically identical?”). Ability to discrimi-
nate between stimuli in the same/different judgment task was greater when
they varied along dimensions that were relevant during categorization train-
ing, and was particularly elevated at the boundary between the categories. Fur-
ther research showed that category learning systematically distorts the percep-
tion of category members by shifting their perceived dimension values away
from members of opposing categories (Goldstone 1995). In sum, there is evi-
dence for three influences of categories on perception: (a) category-relevant
dimensions are sensitized, (b) irrelevant variation is deemphasized, and (c)
relevant dimensions are selectively sensitized at the category boundary.

Computational efforts at explaining categorical perception have mainly
centered on neural networks. In two such models, equally spaced stimuli along
a continuum are associated with category labels, and the networks adapt their
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input-to-category connections so that the stimuli come to evoke their correct
category assignment (Anderson et al 1977, Harnad et al 1995). In effect, the
category feedback establishes attractor states that pull the different members
of a category to a common point, thereby reducing their distinctiveness.

Stimulus Imprinting

A second way that perception can adapt to an environment is by directly im-
printing to it. Through imprinting, detectors (also called receptors) are devel-
oped that are specialized for stimuli or parts of stimuli. The term imprinting
captures the idea that the form of the detector is shaped by the impinging
stimulus. Internalized detectors develop for repeated stimuli, and these detec-
tors increase the speed, accuracy, and general fluency with which the stimuli
are processed. Although evidence for neural implementations of acquired de-
tectors will be considered, more generally the reviewed studies support func-
tional detectors—any abstract device or process that explains the selective
benefit to important, repeated patterns.

WHOLE STIMULUS STORAGE Imprinting may occur for entire stimuli, in
which case a receptor develops that internalizes specific instances. Models
that preserve stimuli in their entirety are called exemplar (Nosofsky 1986) or
instance-based (Logan 1988) models. For example, in Logan’s model, every
exposure to a stimulus leads to an internalized trace of that stimulus. As more
instances are stored, performance improves because more relevant instances
can be retrieved, and the time required to retrieve them decreases. Instance-
based models are supported by results showing that people’s performance in
perceptual tasks is closely tied to their amount of experience with a particular
stimulus. Consistent with this claim, people can identify spoken words more
accurately when they are spoken by familiar voices (Palmeri et al 1993).
Doctors’ diagnoses of skin disorders are facilitated when they are similar to
previously presented cases, even when the similarity is based on attributes
that are irrelevant for the diagnosis (Brooks et al 1991). Increasing the fre-
quency of a cartoon face in an experiment increases its classification accu-
racy (Nosofsky 1991). After several hours of training in a numerosity judg-
ment task (“How many dots are there?”), people’s response times are the
same for all levels of numerosity between 6 and 11 dots, but only for dots that
are arranged as they were during training (Palmeri 1997), consistent with the
notion that slow counting processes can be circumvented by storing specific
arrangements of dots. Even when people know a simple, clear-cut rule for a
perceptual classification, performance is better on frequently presented items
than rare items (Allen & Brooks 1991). Thus, even in situations where one
might think abstract or rule-based processes are used, there is good evidence
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that observers become tuned to the particular instances to which they are ex-
posed.

People are better able to perceptually identify unclear or quickly presented
stimuli when they have been previously exposed to them. Although this effect
is traditionally discussed in terms of implicit memory for exposed items, it also
provides a robust example of perceptual learning. The identification advantage
for familiarized instances lasts at least three weeks, requires as few as one pre-
vious presentation of an item, and is often tied to the specific physical proper-
ties of the initial exposure of the item (Schacter 1987). In brief, instance
memories that are strong and quickly developed facilitate subsequent percep-
tual tasks involving highly similar items.

The power of instance-based models has not been ignored by object rec-
ognition researchers. This has led to a renewed interest in the recently dis-
missed class of “template” models. According to these models, objects are
recognized by comparing them to stored, photograph-like images (tem-
plates) of known objects. Objects are placed into the same category as the
template to which they are most similar. In some cases, preprocessing opera-
tions rotate and distort templates to maximize their overlap with the pre-
sented object (Hinton et al 1992). Ullman (1989) has shown that template
models can be highly effective, and that preprocessing operations can find
good matches between an object and template without knowing ahead of time
what the object is, as long as at least three points of alignment between the ob-
ject and template can be found on the basis of local physical cues. Poggio &
Edelman (1990) present a neural network model that learns to recognize three-
dimensional objects by developing units specialized for presented two-
dimensional views, associating them with their correct three-dimensional in-
terpretation, and interpolating between stored views for recognizing novel ob-
jects. Consistent with this model’s assumption that receptors become tuned to
particular viewpoints, humans can learn to identify three-dimensional objects
by seeing two-dimensional views that have been arbitrarily paired with the
three-dimensional object (Sinha & Poggio 1996). Tarr (1995) provides sup-
port for the storage of multiple views to aid recognition by showing that the
time to recognize rotated objects is a function of their rotational distance to the
nearest stored viewpoint.

FEATURE IMPRINTING ~ Rather than imprinting on entire stimuli, there is also
evidence that people imprint on parts or features of a stimulus. If a stimulus
part is important, varies independently of other parts, or occurs frequently,
people may develop a specialized detector for that part. This is a valuable pro-
cess because it leads to the development of new “building blocks™ for describ-
ing stimuli (Schyns et al 1998, Schyns & Murphy 1994). Parts that are devel-
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oped in one context can be used to efficiently describe subsequent objects. Ef-
ficient representations are promoted because the parts have been extracted be-
cause of their prevalence in an environment, and thus are tailored to the envi-
ronment.

Schyns & Rodet (1997) find that unfamiliar parts (arbitrary curved shapes
within an object) that are important in one task are more likely to be used to
represent subsequent categories. Their subjects were more likely to represent a
conjunction of two parts, X and Y, in terms of these two components (rather
than as a whole unit, or a unit broken down into different parts) when they re-
ceived previous experience with X as a defining part for a different category.
Configurations of dots are more likely to be circled as coherent components of
patterns if they were previously important for a categorization (Hock et al
1987). Likewise, Hofstadter (1995) and his colleagues describe how learning
to interpret an object as possessing certain parts creates a bias to see other ob-
jects in terms of those parts.

Several computational models have been recently devised that create per-
ceptual building blocks during the course of being exposed to, or categorizing,
objects. Neural networks have been particularly popular because they often
possess hidden units that intervene between inputs and outputs and can be in-
terpreted as developing internal representations of presented inputs (Rumel-
hart et al 1986). These internal representations can function as acquired feature
detectors, built up through environmental exposure. For example, simple ex-
posure to photographs of natural scenes suffices to allow neural networks to
create a repertoire of oriented line segments to be used to describe the scenes
(Miikkulainen et al 1997, Schmidhuber et al 1996). These feature detectors
bear a strong resemblance to neural detectors found in the primary visual cor-
tex and are created by learning algorithms that develop units that respond to in-
dependent sources of regularity across photographs. Networks with detectors
that adapt by competing for the privilege to accommodate inputs can generate
specialized detectors resembling ocular dominance and orientation columns
found in the visual cortex (Obermayer et al 1995). These networks do not re-
quire feedback labels or categorizations; the stimuli themselves contain suffi-
cient regularities and redundancies that can be exploited to generate efficient
vocabularies (Grossberg 1991). However, if neural networks do receive feed-
back about stimulus categorizations, then the features that they develop can be
tailored to these categories (Intrator 1994, Rumelhart et al 1986). The simplic-
ity, predictive power, and value of neural networks that create their own featu-
ral descriptions make these systems exciting and fruitful avenues for explora-
tion.

There is also neurological evidence for perceptual learning via imprinting
on specific features within a stimulus. Weinberger (1993) reviews evidence
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that cells in the auditory cortex become tuned to the frequency of often-
repeated tones. Ascending in complexity, cells in the inferior temporal cortex
can be tuned by extended experience (about 600,000 trials) with 3D objects
(Logothetis et al 1995); these cells also show heightened response to novel
views of the trained object. Cells in this same area can be highly selective for
particular faces, and this specificity is at least partially acquired given that it is
especially pronounced for familiar faces (Perrett et al 1984).

The cognitive, computational, and neurophysiological results indicate
that the “building blocks™ used to describe objects are adapted to environ-
mental inputs. In many of the cases considered thus far, feature and part de-
tectors are devised that capture the regularities implicit in the set of input
stimuli. However, the detectors that develop are also influenced by task re-
quirements and strategies. For example, altering the color of target objects
from training to transfer does not influence performance unless the training
task requires encoding of color (Logan et al 1996). In general, whether a
functional detector is developed will depend on both the objective frequency
and subjective importance of the physical feature (Sagi & Tanne 1994, Shiu
& Pashler 1992). Systems that can acquire new feature detectors have func-
tional advantages over systems that employ a hard-wired set of detectors.
One difficulty with fixed sets of features is that it is hard to choose exactly
the right set of elements that will suffice to accommodate all possible future
entities. On the one hand, if a small set of primitive elements is chosen,
then it is likely that two entities will eventually arise that must be distin-
guished, but cannot with any combination of available primitives. On the
other hand, if a set of primitives is sufficiently large to construct all entities
that might occur, then it will likely include many elements that lie unused,
waiting for their moment of need to possibly arise (Schyns et al 1998). How-
ever, by developing new elements as needed, newly important discrimina-
tions can cause the construction of detectors that are tailored for the discrimi-
nation.

TOPOLOGICAL IMPRINTING A third type of imprinting occurs at a more ab-
stract level. Rather than developing detectors for particular stimuli or fea-
tures, environmental regularities that span across a set of stimuli can also be
internalized. The patterns impinging upon an organism will have certain simi-
larities to one another. These similarities can be represented by plotting each
pattern in a multidimensional space. Topological imprinting occurs when the
space and the positions of patterns within the space are learned as a result of
training with patterns. Rather than simply developing independent detectors,
topological imprinting implies that a spatially organized network of detectors
is created.
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The simplest form of topological imprinting is to create a set of feature val-
ues ordered along a single dimension. Developmental evidence suggests that
dimensional organizations are learned. On the basis of evidence from a
“Which is more?” task, children and adults agree that large objects are “more”
than small objects, but three-year-old children treat dark objects as more than
light objects, unlike adults (Smith & Sera 1992). Loudness is originally disor-
ganized for children, but comes to be dimensionally organized with loud
sounds being perceived as more than soft sounds. The importance of dimen-
sionally organized percepts is apparent from Bedford’s (1993, 1995) work on
learning the relations between dimensions. She argues that perceptual learning
involves adaptively mapping from one dimension to another. For example,
upon wearing prism eyeglasses that distort the relation between visual infor-
mation and proprioceptive feedback, learning is much easier when the entire
visual dimension can be shifted or warped to map onto the proprioceptive di-
mension than when unrelated visual-motor associations must be acquired.
Both experiments point to people’s natural tendency to draw associations be-
tween dimensions. One of the most striking examples of this phenomenon con-
tinues to be Howells’ (1944) experiment in which people learn to associate a
particular tone with the color red after several thousand trials, and then are
transferred to a task where they try to identify a neutral color white. When the
tone is present, people systematically choose as white a color that is slightly
green, suggesting that the tone has come to substitute for redness to some ex-
tent. Perceptual learning involves developing dimensional structures and also
mappings across these dimensions.

Quite a bit is known about the neural and computational mechanisms un-
derlying the acquisition of topologically structured representations of the envi-
ronment. Sensory maps in the cortex preserve topological structures of the pe-
ripheral sensory system; for example, the primary sensory area responsible for
the middle finger (digit 3) of the Macaque monkey lies between the areas re-
sponsible for digits 2 and 4. Several types of adaptive cortical change, all of
which preserve topological mapping, are observed when environmental or cor-
tical changes occur (Garraghty & Kaas 1992). When cortical areas are le-
sioned, neighboring areas newly respond to sensory information formerly con-
trolled by the lesioned area; when external sensory organs are disabled, corti-
cal areas formerly activated by the organ become sensitive to sensory stimula-
tion formerly controlled by its neighboring areas (Kaas 1991). When two fin-
gers are surgically fused, creating highly correlated inputs, a large number of
cortical areas develop that respond to both fingers (Allard et al 1991). Ko-
honen (1995) has developed a framework for describing neural networks that
develop topological structures with learning. These networks are composed of
detectors that compete for the opportunity to learn to respond to inputs more
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strongly, and are arranged in topologies (typically, two-dimensional lattices).
These topologies influence learning—not only does the unit that is best
adapted to an input learn to respond more vigorously to the input, but so do its
neighbors. Variants of Kohonen’s networks can acquire topologies similar to
those found in the cortex, and can adapt in similar ways to network lesions and
alterations in the environment (Miikkulainen et al 1997). Other neural net-
works capture more abstract spatial dimensions, learning dimensions that opti-
mally describe the similarities between a set of objects (Edelman & Intrator
1997). In general, these networks develop detectors that are locally tailored to
particular inputs, and also arrange their detectors in a global configuration that
represents similarities and dimensions across inputs.

Differentiation

A major mechanism of perceptual learning is for percepts to become increas-
ingly differentiated from each other. By differentiation, stimuli that were once
psychologically fused together become separated. Once separated, discrimina-
tions can be made between percepts that were originally indistinguishable. As
with imprinting, differentiation occurs at the level of whole stimuli and fea-
tures within stimuli.

DIFFERENTIATION OF WHOLE STIMULI  In the classic examples of wine experts
learning to distinguish the upper and lower halves of a bottle of Madeira by
taste, poultry sorters learning to distinguish male from female chicks, and par-
ents learning to uniquely identify their identical twin children, perceptual ad-
aptation involves developing increasingly differentiated object representa-
tions. In many cases, simple preexposure to the stimuli to be distinguished pro-
motes their differentiation. Rats who have cutout shapes visible from their
cages are better able to learn subsequent discriminations involving these
shapes than rats who are exposed to other shapes (Gibson & Walk 1956). Prac-
tice in identifying visual “scribbles” increases their discriminability, even
when no feedback is provided (Gibson & Gibson 1955). However, learning to
differentiate between objects is typically accelerated by training in which the
objects are associated with different labels or responses (Gibson 1969, Hall
1991).

Psychophysical differentiation Laboratory studies have extensively studied
training effects involving simple discriminations. In vernier discrimination
tasks, subjects respond whether one line is displaced above or below a second
line. Training in this task can produce impressive improvements, to the point
that subjects exhibit resolution finer than the spacing between individual pho-
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toreceptors (Poggio et al 1992). Such hyperacuity is possible because recep-
tive fields of cells overlap considerably, and thus points that fall within the re-
ceptive field of one cell can be discriminated by differential impacts on other
cells. Discrimination training is often highly specific to the task. Trained per-
formance on a horizontal discrimination task frequently does not transfer to a
vertical version of the same task (Fahle & Edelman 1993, Poggio et al 1992),
does not transfer to new retinal locations (Fahle et al 1995, Shiu & Pashler
1992), and does not completely transfer from the trained eye to the untrained
eye (Fahle et al 1995).

The surprising specificity of simple discrimination learning has led some
researchers to posit an early cortical locus of adaptation, perhaps as early as the
primary visual cortex (Gilbert 1996, Karni & Sagi 1991). Improvement in the
discrimination of motion of a random dot field has been shown to be associated
with a change in the response characteristics of individual cells in area MT in
the parietal cortex (Zohary et al 1994). Computational models have explained
improvements in discrimination training in terms of changes in weights be-
tween cells and output units that control judgments (Poggio et al 1992). Each
cell has a limited receptive field and specific orientation, and cells that predict
vernier discriminations become more influential over time. Thus, the proposed
mechanism for differentiation is selective emphasis of discriminating recep-
tive cells.

A related method for implementing differentiation is to develop expanded
representations for receptive cells that permit discrimination of objects that
should receive different responses. Monkeys trained to make discriminations
between slightly different sound frequencies develop larger cortical repre-
sentations for the presented frequencies than control monkeys (Recanzone et
al 1993). Similarly, monkeys learning to make a tactile discrimination with
one hand develop a larger cortical representation for that hand than for the
other hand (Recanzone et al 1992). Elbert et al (1995) measured brain activ-
ity in the somatosensory cortex of violinists as their fingers are lightly
touched. There was greater activity in the sensory cortex for the left hand than
the right hand, consistent with the observation that violinists require fine
movements of their left-hand fingers considerably more than their right-hand
fingers.

A third neural mechanism for stimulus differentiation is to narrow the tun-
ing of critical receptors. Receptors that are originally broadly tuned (large re-
ceptive fields) often become responsive to an increasingly limited range of
stimuli with training. Recanzone et al (1993) observe a narrowing of
frequency-sensitive receptors following auditory discrimination. Saarinen &
Levi (1995) also find evidence that training in a vernier discrimination task re-
sults in receptors that are more narrowly tuned to diagnostic orientations. A
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mechanism for differentiation explored by Luce et al (1976) is that a roving at-
tentional band can be selectively placed on critical regions of a perceptual di-
mension, and that signals falling within the band are given a sensory represen-
tation about an order of magnitude greater than signals falling outside of the
band. These four mechanisms—selective weighting of discriminating cells,
expanding regions dedicated to discriminating cells, narrowing tuning of dis-
criminating cells, and shifting attentional “magnifiers” to critical regions—all
serve to differentiate stimuli by psychologically warping local regions of
stimulus space.

Differentiation of complex stimuli Differentiation of more complex stimuli
that differ across many dimensions has also been studied. Lively et al (1993)
report training procedures that allow Japanese speakers to acquire a discrimi-
nation between the phonemes /r/ and /1/ that is not present in their native lan-
guage. The methodological innovations apparently needed to assure general
transfer performance are to provide the phonemes in natural words, to give lis-
teners words spoken by many different speakers, and to give immediate feed-
back as to the correct word. A general finding has been that increasing the vari-
ability of instances within the categories to be discriminated increases the
amount of training time needed to reach a criterion level of accuracy, but also
yields better transfer to novel stimuli (Posner & Keele 1968). Another result of
practical interest is that discrimination performance can be improved by an
“easy-to-hard” procedure in which subjects are first exposed to easy, highly
separated discriminations along a dimension (such as black versus white stim-
uli on the dimension of brightness), and then are given successively more diffi-
cult discriminations along the same dimension (Mackintosh 1974). Appar-
ently, first presenting the easy discrimination allows organisms to allocate at-
tention to the relevant dimension.

A major subfield within stimulus differentiation has explored expertise in
face perception. People are better able to identify faces belonging to races with
which they are familiar (Shapiro & Penrod 1986). For example, in general,
Caucasian participants in the United States are better able to identify Cauca-
sian faces than African-American faces. This is another example of familiar
objects becoming increasingly differentiated. A common account for the diffi-
culty in recognizing cross-race faces is that people become adept at detecting
the features that are most useful in distinguishing among faces we commonly
see (O’Toole et al 1996). Interestingly, people are faster at categorizing those
faces that are more difficult to identify. For example, in an African-American/
Caucasian discrimination task, Caucasian participants are faster at categoriz-
ing African-Americans (as African-Americans) than Caucasians (Valentine
1991). Valentine explains this effect in terms of greater perceived distances
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between familiar faces, which slows tasks such as a two-category discrimina-
tion that require treating familiar faces as equivalent. In contrast, Levin (1996)
obtains evidence that African-American categorizations are facilitated for
Caucasians because of a quickly coded race feature that marks cross-race but
not same-race faces. This later possibility suggests that object differentiation
may be achieved by developing features that uniquely pick out less common
objects from familiar objects (Goldstone 1996), and is consistent with results
showing that perceptual retention of abnormal chest X-rays increases with ra-
diological expertise, whereas retention of normal X-rays actually decreases
with expertise (Myles-Worsley et al 1988). Levin’s account is not necessarily
incompatible with the standard account; features may become salient if they
serve to either discriminate among familiar objects or to distinguish rare ob-
jects from familiar ones.

The results are somewhat mixed with respect to the benefit of instructional
mediation in learning to differentiate stimuli. For learning to discriminate be-
tween beers (Peron & Allen 1988), experience with tasting beers improved
performance, but increased experience with beer-flavor terminology did not.
However, in learning to sort day-old chickens by gender, college students with
no experience were able to categorize photographs of chickens nearly as well
as were expert chicken sorters if they were given a short page of instructions
describing shape-based differences between male and female chickens
(Biederman & Shiffrar 1987). It is an open question whether genuinely percep-
tual changes can be produced after simply reading a brief set of instructions.
Those who argue that perceptual phenomena are generally not highly malle-
able to instructions and strategies (Rock 1985) might consider Biederman &
Shiffrar’s results to merely show that perceptual features that have previously
been learned can become linked to categories by instructions. On the other
hand, strategic intentions and labels can produce phenomenologically differ-
ent percepts of ambiguous objects, and the linguistic labels chosen to describe
an object can radically reorganize its perception (Wisniewski & Medin 1994).
The possibility that perceptual processes are altered by instructional or strate-
gic manipulations cannot be dismissed.

Differentiation of categories Ascending even further in terms of the com-
plexity of stimuli to be differentiated, not only do simple and complex objects
become differentiated with experience, but entire categories do as well. Cate-
gory learning often involves dividing a large, general category into subcatego-
ries. Intuition tells us that experts in a field have several differentiated catego-
ries where the novice has only a single category. Empirical support for this no-
tion comes from Tanaka & Taylor’s (1991) study of speeded classification by
dog and bird experts. Categories can be ordered in terms of specificity, from
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highly general superordinate categories (e.g. “animal’), to moderately specific
basic-level categories (“dog”), to highly specific subordinate categories
(“German shepherd”). When shown photographs of objects and asked to ver-
ify whether they belong to a particular category, experts are able to categorize
at basic and subordinate levels equally quickly, but only for the objects within
their domain of expertise. In contrast, novices (e.g. bird experts shown dog
photographs) show a pronounced advantage for basic-level categorizations.
Extending the previously described identification advantage for same-race
faces, O’Toole et al (1996) find that Caucasians and Japanese are faster at clas-
sifying faces of their own race into “male” and “female” categories than faces
of the other race. Categories, not just objects, are more differentiated within fa-
miliar domains.

Cross-cultural differences provide additional evidence that categories that
are important become highly differentiated (Malt 1995). For example, the
Tzletal Indians group all butterflies together in one category, but have 16 dif-
ferent categories for their larvae, which are culturally important as food
sources and crop pests (Hunn 1982). The observer-relative terms “Left” and
“Right” are important spatial concepts in some cultures, whereas other cul-
tures (e.g. speakers of Guugu Yimithrr) much more frequently describe space
in terms of absolute directions such as “North” and “South.” Levinson (1996)
argues that this cultural difference has an influence on perceptual tasks such as
completing paths and discriminating between events that differ as to their rela-
tive or absolute spatial relations. Generally, the degree of differentiation
among the categories of a culture is a joint function of the importance of the
categories for the culture and the objective number and frequency of the cate-
gories in the environment (Geoghegan 1976).

There is also developmental evidence that categories become more differ-
entiated with age. Infants tend to successively touch objects that are percep-
tually similar. Using successive touching as an indicator of subjective group-
ings, Mandler et al (1991) show that 18-month-old infants group objects at
the superordinate level (e.g. successively touching toy goats and cats more
frequently than dogs and planes) before they show evidence of basic-level
categories (e.g. by successively touching two cats more frequently than a cat
and a dog). In sum, evidence from expert/novice differences, cross-cultural
differences, development, and neuroscience (Farah 1990) provide converg-
ing evidence that broader levels of categorization are deeply entrenched and
perhaps primary, and that experience yields more subtly differentiated catego-
ries.

DIFFERENTIATION OF DIMENSIONS  Just as experience can lead to the psycho-
logical separation of stimuli or categories, it can also lead to the separation of
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perceptual dimensions that comprise a single stimulus. Dimensions that are
originally treated as fused often become segregated with development or train-
ing. People often shift from perceiving stimuli in terms of holistic, overall as-
pects to analytically decomposing objects into separate dimensions.

This trend has received substantial support from developmental psychol-
ogy. Evidence suggests that dimensions that are easily isolated by adults,
such as the brightness and size of a square, are treated as fused together for
children (Smith 1989a). It is relatively difficult for young children to say
whether two objects are identical on a particular property, but relatively easy
for them to say whether they are similar across many dimensions (Smith
1989a). Children have difficulty identifying whether two objects differ on
their brightness or size even though they can easily see that they differ in some
way (Kemler 1983). Children also show considerable difficulty in tasks that
require selective attention to one dimension while ignoring another (Smith &
Evans 1989). When given the choice of sorting objects by their overall similar-
ity or by selecting a single criterial dimension, children tend to use overall
similarity, whereas adults use the single dimension (Smith 1989b). Perceptual
dimensions seem to be more tightly integrated for children than adults, such
that children cannot easily access the individual dimensions that compose an
object.

The developmental trend toward differentiated dimensions is echoed by
adult training studies. In certain circumstances, color experts (art students and
vision scientists) are better able to selectively attend to dimensions (e.g. hue,
chroma, and value) that comprise color than are nonexperts (Burns & Shepp
1988). People who learn a categorization in which color saturation is relevant
and color brightness is irrelevant develop selectively heightened sensitivity at
making saturation discriminations (Goldstone 1994), even though prior to
training it is difficult for adults to selectively attend to brightness without at-
tending to saturation. Melcher & Schooler (1996) provide suggestive evidence
that expert, but not nonexpert, wine tasters isolate independent perceptual fea-
tures in wines that closely correspond to the terminology used to describe
wines.

Several computational models have been proposed for differentiation. Com-
petitive learning networks differentiate inputs into categories by specializing
detectors to respond to classes of inputs. Random detectors that are slightly
more similar to an input than other detectors will learn to adapt themselves to-
ward the input and will inhibit other detectors from doing so (Rumelhart &
Zipser 1985). The end result is that originally similar detectors that respond al-
most equally to all inputs become increasingly specialized and differentiated
over training. Detectors develop that respond selectively to particular classes
of input patterns or dimensions within the input. Smith et al (1997) present a
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neural network simulation of the development of separated dimensions in chil-
dren. In the network, dimensions become separated by detectors developing
strong connections to specific dimensions while weakening their connections
to all other dimensions. The model captures the empirical phenomenon that di-
mension differentiation is greatly facilitated by providing comparisons of the
sort “this red square and this red triangle have the same color.”

Unitization

Unitization is a perceptual learning mechanism that seemingly operates in a di-
rection opposite to differentiation. Unitization involves the construction of
single functional units that can be triggered when a complex configuration
arises. Via unitization, a task that originally required detection of several parts
can be accomplished by detecting a single unit. Whereas differentiation di-
vides wholes into cleanly separated parts, unitization integrates parts into sin-
gle wholes.

In exploring unitization, LaBerge (1973) found that when stimuli were un-
expected, participants were faster at responding to actual letters than to letter-
like controls. Furthermore, this difference was attenuated as the unfamiliar
letter-like stimuli became more familiar with practice. He argued that the com-
ponents of often-presented stimuli become processed as a single functional
unit when they consistently occur together. More recently, Czerwinski et al
(1992) have described a process in which conjunctions of stimulus features are
“chunked” together so that they become perceived as a single unit. Shiffrin &
Lightfoot (1997) argued that even separated line segments can become unit-
ized following prolonged practice with the materials. Their evidence comes
from the slopes relating the number of distractor elements to response time in a
feature search task. When participants learned a conjunctive search task in
which three line segments were needed to distinguish the target from distrac-
tors, impressive and prolonged decreases in search slopes were observed over
20 sessions.

Other evidence for unitization comes from word perception. Researchers
have argued that words are perceived as single units because of people’s life-
long experience with them. These word units can be processed automatically
and interfere with other processes less than do nonwords (O’Hara 1980, Smith
& Haviland 1972). Results have shown that the advantages attributable to
words over nonwords cannot be explained by the greater informational redun-
dancy of letters within words (Smith & Haviland 1972). Instead, these re-
searchers argue for recognition processes that respond to information at levels
higher than the individual letters. Salasoo et al (1985) find that the advantage
of words over nonwords in perceptual identification tasks can be eliminated by
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repetitively exposing participants to the stimuli. They explain their results in
terms of developing single, unitized codes for repeated nonwords.

Evidence for unitization also comes from researchers exploring configural
perception. For example, researchers have argued that faces are processed in a
holistic or configural manner that does not involve analyzing faces into spe-
cific features (Farah 1992). According to the “inversion effect” in object rec-
ognition, the recognition cost of rotating a stimulus 180 degrees in the picture
plane is much greater for specialized, highly practiced stimuli than for less spe-
cialized stimuli (Diamond & Carey 1986, Tanaka & Gauthier 1997). For ex-
ample, recognition of faces is substantially less fast and accurate when the
faces are inverted. This large difference between upright and inverted recogni-
tion efficiency is not found for other objects and is not found to the same de-
gree for less familiar cross-race faces. Diamond & Carey (1986) report a large
inversion cost for dog breed recognition, but only for dog experts. Similarly,
Gauthier & Tarr (1997) report that large inversion costs for a nonsense object
can be created in the laboratory by giving participants prolonged exposure to
the object. They conclude that repeated experience with an object leads to de-
veloping a configural representation of it that combines all of its parts into a
single, viewpoint-specific, functional unit.

There is also evidence that children develop increasingly integrated repre-
sentations of visual objects as they mature. Whereas three-year-old children
tend to break objects into simple, spatially independent parts, five-year-olds
use more complicated spatial relations to connect the parts together (Stiles &
Tada 1996). It has even been claimed that configural association systems re-
quire about 4.5 years to develop, and before this time, children can solve per-
ceptual problems requiring elements but not configurations of elements (Rudy
et al 1993).

Computer and neural sciences have provided insights into methods for im-
plementing unitization. Grossberg’s self-organizing ART systems (Grossberg
1984, 1991) create units by building bidirectional links between several per-
ceptual features and a single unit in a deeper layer of the neural network. Trig-
gering the single unit suffices to reproduce the entire pattern of perceptual fea-
tures. Mozer et al (1992) develop a neural network that creates configural units
by synchronizing neurons responsible for visual parts to be bound together.
Visual parts that co-occur in a set of patterns will tend to be bound together,
consistent with the evidence above indicating that units are created for often-
repeated stimuli. Neural mechanisms for developing configural units with ex-
perience are located in the superior colliculus and inferior temporal regions.
Cells in the superior colliculus of several species receive inputs from many
sensory modalities (e.g. visual, auditory, and somatosensory), and differences
in their activities reflect learned associations across these modalities (Stein &



604 GOLDSTONE

Wallace 1996). Within the visual modality, single cells of the inferior temporal
cortex become selectively responsive to complex objects that have been repeti-
tively presented (Logothetis et al 1995).

Unitization may seem at odds with dimension differentiation. There is an
apparent contradiction between experience creating larger “chunks” via uniti-
zation and dividing an object into more clearly delineated parts via differentia-
tion. This incongruity can be transformed into a commonality at a more ab-
stract level. Both mechanisms depend on the requirements established by tasks
and stimuli. Objects will tend to be decomposed into their parts if the parts re-
flect independent sources of variation, or if the parts differ in their relevancy
(Schyns & Murphy 1994). Parts will tend to be unitized if they co-occur fre-
quently, with all parts indicating a similar response. Thus, unitization and dif-
ferentiation are both processes that build appropriate-sized representations for
the tasks at hand. Both phenomena could be incorporated in a model that be-
gins with a specific featural description of objects, and creates units for con-
junctions of features if the features frequently occur together, and divides fea-
tures into subfeatures if independent sources of variation within the original
features are detected.

THE LIMITATIONS AND POTENTIAL OF
PERCEPTUAL LEARNING

Thus far, the reviewed evidence has focused on positive instances of perceptual
learning—situations where training produces changes, oftentimes strikingly
large, to our perceptual systems. However, a consideration of the limits on per-
ceptual learning leads to a better understanding of the constraints on learning,
and hence of the mechanisms that are at work when learning is achieved.
Previously reviewed evidence suggests strong limits on the generality of
perceptual learning. Training on simple visual discriminations often does not
transfer to different eyes, to different spatial locations, or to different tasks in-
volving the same stimuli (Fahle & Morgan 1996, Shiu & Pashler 1992). As
suggested by the strong role played by imprinting, perceptual learning often
does not transfer extensively to new stimuli or tasks different from those used
during training. Several researchers have argued that generalization between
tasks is only found to the extent that the tasks share procedural elements in
common (Anderson 1987, Kolers & Roediger 1984). At the same time, percep-
tual training does often transfer not just within a sensory modality, but across
sensory modalities. Training on a visual discrimination involving certain
shapes improves performance on a later tactile discrimination involving the
same shapes (Hughes et al 1990). Not only does cross-modality transfer occur,
but it has also been shown computationally that two modalities that are trained
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at the same time and provide feedback for each other can reach a level of per-
formance that would not be possible if they remained independent (Becker
1996, de Sa & Ballard 1997, Edelman 1987). Consistent with these arguments
for mutually facilitating modalities, children with auditory deficits but normal
1Qs also tend to show later deficits in visual selective attention tasks (Quittner
et al 1994). One principle for unifying some of the evidence for and against
generalization of training seems to be that when perceptual learning involves
changes to early perceptual processes, then there will be less generalization of
that learning to other tasks (Sagi & Tanne 1994, Sireteanu & Rettenbach
1995).

In addition to constraints on generalization, there are limits on whether per-
ceptual learning occurs at all. To take unitization as an example, many studies
indicate a surprising inability of people to build single chunks out of separated
dimensions. In Treisman & Gelade’s (1980) classic research on feature search,
the influence of distractor letters in a conjunctive search remained essentially
unchanged over 1664 trials, suggesting that new functional units cannot be
formed for conjunctions of color and shape. Although these results are replica-
ble, they depend on the particular features to be joined together. Shiffrin &
Lightfoot (1997) report five-fold improvements in response times in a similar,
conjunctive search paradigm in which the conjunctions are defined not by
color and shape but by different line segments. Searching for conjunctions of
shape parts that are formed by life-long experience with letters (Wang et al
1994), or brief laboratory experience (Lubow & Kaplan 1997), is quite differ-
ent from searching for unfamiliar conjunctions. The influence of distractors on
a conjunctive task involving relations such as “dash above plus” is not modu-
lated by practice if the dash and plus are disconnected, but if they are con-
nected, then pronounced practice effects are observed (Logan 1994). People
are much more adept at learning conjunctions between shape and position than
between shape and color, even when position and color are equally salient
(Saiki & Hummel 1996). Thus, logically equivalent conjunctive search tasks
can produce very widely different perceptual learning patterns depending on
the conjoined features. Features or dimensions that are similar to each other are
easy to join together and difficult to isolate (Melara & Marks 1990), and per-
ceptual learning is constrained by these relations.

Perceptual learning at any given time is always constrained by the existing
structure of the organism. As such, it is misguided to view perceptual learning
as the opposite of innate disposition. Although apparently paradoxical, it is the
constraints of systems that allow for their adaptation. Eimas (1994, 1997) pro-
vides convincing evidence that infants come into the world with techniques for
segmenting speech into parts, and it is these constraints that allow them later to
learn the meaning-bearing units of language. Many models of perception are
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shifting away from generic, general-purpose neural networks and toward
highly structured, constrained networks that have greater learning and gener-
alization potential because of their preexisting organization (Regier 1996).
Early constraints on perception serve to bootstrap the development of more so-
phisticated percepts. For example, infants seem to be constrained to treat parts
that move together as coming from the same object, but this constraint allows
them to learn about the color and shape regularities found within objects
(Spelke 1990). The preexisting structures that provide the basis of perceptual
learning may be innate, but also may be the result of earlier learning processes
(Elman et al 1996). At any given time, what can be learned depends on what
has already been learned; the constraints on perceptual change may themselves
evolve with experience.

Despite limits on the generalization, speed, and occurrence of perceptual
learning, it remains an important source of human flexibility. Human learning
is often divided into perceptual, cognitive, and procedural varieties. These di-
visions are regrettable, causing fruitful links to be neglected. There are deep
similarities between perceptual unitization and chunking in memory, and be-
tween perceptual differentiation and association-building (Hall 1991). In
many cases, perceptual learning involves acquiring new procedures for ac-
tively probing one’s environment (Gibson 1969), such as learning procedures
for efficiently scanning the edges of an object (Hochberg 1997, Salapatek &
Kessen 1973). Perhaps the only reason to selectively highlight perceptual
learning is to stress that flexible and consistent responses often involve adjust-
ing initial representations of stimuli. Perceptual learning exerts a profound in-
fluence on behavior precisely because it occurs early during information proc-
essing and thus shifts the foundation for all subsequent processes.

In her 1991 preface to her 1963 Annual Review of Psychology article, Gib-
son laments, “I wound up pointing out the need for a theory and the prediction
that ‘more specific theories of perceptual learning are on the way.” I was wrong
there—the cognitive psychologists have seldom concerned themselves with
perceptual learning” (Gibson 1991, p. 322). The reviewed research suggests
that this quote is too pessimistic; there has been much progress on theories of
the sort predicted by Gibson in 1963. These theories are receiving convergent
support from several disciplines. Many of the concrete proposals for imple-
menting mechanisms of perceptual learning come from neural and computer
sciences. Traditional disciplinary boundaries will have to be crossed for a
complete account, and considering the field in terms of underlying mecha-
nisms of adaptation (e.g. attention weighting, imprinting, differentiation, and
unitization) rather than domains (e.g. expertise, psychophysics, development,
and cross-cultural comparison) will perhaps result in more unified and princi-
pled accounts of perceptual learning.
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Note: Further information about the topic and author can be accessed via
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Visit the Annual Reviews home page at
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