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Abstract

Category learning not only depends upon perceptual and semantic representations; it
also leads to the generation of these representations. We describe two series of experi-
ments that demonstrate how categorization experience alters, rather than simply uses,
descriptions of objects. In the first series, participants first learned to categorize objects
on the basis of particular sets of line segments. Subsequently, they were given a percep-
tual part-whole judgment task. Categorization training influenced participants’ part-
whole judgments, indicating that whole objects were more likely to be broken down into
parts that were relevant during categorization. In the second series, correlations were cre-
ated or broken between semantic features of word concepts (e.g., ferocious vs. timid, and
group-oriented vs. solitary animals). The best transfer was found between category
learning tasks that shared the same semantic organization of concepts. Together, the
experiments support models of category learning that simultaneously create the elements
of categorized objects’ descriptions and associate those elements with categories.

Human concept learning clearly depends upon the descriptions we give to the objects
we categorize. Our concept of (DOG) is built out of features such as “furry,” “barks,”
“four-legged,” “domesticated,” “friendly,” and “loyal.” However, recent research has
found that the dependency works both ways. People’s object representations not only
influence, but are influenced by, the concepts that they learn. We have been exploring the
psychological mechanisms by which concepts and descriptions mutually influence one
another, and building computational models to show that the circle of influences is
benign rather than vicious. Our efforts are not solitary. There is a growing body of behav-
ioral [Shiffrin and Lightfoot (1997), Gauthier et al. (1998), Livingston, Andrews and
Harnad (1998)], developmental [Needham (1999)], neural [Kaas (1991), Gauthier and
Tarr (1997), Sigala, Gabbiani and Logothetis (2002) Gauthier et al. (2003)] and compu-
tational [Rumelhart and Zipser (1985), Hofstadter and Mitchell (1994), Harnad, Hanson
and Lubin (1995), Behrmann, Zemel and Mozer (1998), Palmeri, Wong and Gauthier
(2004)] evidence suggesting that it is necessary and desirable to develop categories and
descriptions for objects simultaneously.

In the [DOG] example above, we purposefully merged what might be thought to be
two different kinds of descriptions – perceptual and semantic. We aim to develop a uni-
fied account of perceptual and semantic reorganization that accompanies category
learning. This is consistent with our larger effort to reunite perceptual and conceptual
processes [Goldstone (1994), Goldstone and Barsalou (1998)]. In what follows, we
describe two series of experiments implicating category learning in representational
reorganization. The first series focuses on a case of perceptual reorganization, while the
second focuses on semantic reorganization. However, similar mechanisms are likely to
underlie both kinds of reorganization, encouraging the effort to unite perceptual and
conceptual adaptation processes.
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1. Concept learning and perception

Within traditional work on concept learning and categorization, there has been little
suggestion that learned concepts influence perception. A working assumption made by
many of the most influential theories of categorization [Bruner, Goodnow and Austin
(1956), Medin and Schaffer (1978), Hintzman (1986)] is that objects to be categorized
are described along a fixed set of features. The categorization procedure uses, but does
not alter, the perceptual descriptions.

However, recently a number of researchers have argued that in many situations, the
categorization process influences the featural descriptions that are used. Rather than
viewing the “vocabulary” of primitives as fixed by low-level processes, this view main-
tains that the vocabulary is dependent on the higher-level processes that use the vocabu-
lary. Some evidence for this comes from the study of expert/novice differences. Evidence
suggests that experts perceive structures in X-rays [Lesgold et al. (1988), Norman et al.
(1992), Sowden, Davies and Roling (2000)], beers [Peron and Allen (1988)], and infant
chickens [Biederman and Shiffrar (1987)] that are missed by novices. Experts in these
fields seem to acquire new ways of perceptually structuring objects as they learn new
concepts.

1.1. Object segmentation

Objects often have more than one possible segmentation. The letter X can be viewed as
composed of two crossing diagonal lines, or as a V and an upside-down V that just
touch at their vertices. Segmenting objects into parts is an important part of the process
of object recognition [Hoffman and Richards (1984), Hummel and Biederman (1992)].
Stephen Palmer (1977) argued that some segmentations of an object into parts are psy-
chologically more natural than others. He developed a set of measures for determining
the naturalness of a particular segmentation of an object. In one measure, Palmer
assumed that the longer it took participants to verify whether a particular part was con-
tained in an object, the less natural was the part. For example, in Figure 1, participants
saw the whole object on the left and one of the four parts on the right. Participants
would generally take longer to respond that the unnatural parts belonged to the whole
than that the natural parts did. In general, Palmer’s different measures of segmentation
naturalness closely converged. Parts that were natural according to one measure were
usually found to be natural according to other measures as well. Furthermore, the meas-
ures agreed well with a formal model of part naturalness that integrates several differ-
ent sources of physical information. In this model, natural object parts tend to have
components that are close to each other, have similar orientations, are connected to each
other, and have similar lengths.

Our experiments used materials and tasks similar to those used by Palmer, and exam-
ined the possibility that information that is physically present in an object is not sufficient
to determine its segmentation into parts. Rather, information about a person’s categoriza-
tion experience may also be necessary to determine the most natural segmentation.
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1.2. Experiment 1

Experiment 1 tests whether categorization training can alter the naturalness of a part
within a whole, as measured by part-whole response times. Participants’ categorization
experience is manipulated by giving them one of two different categories to learn. Both
groups of participants are then given the same set of part-whole judgments.

The categorization conditions differ in the set of line segments that are diagnostic for
categorization. The stimuli to be categorized are distorted versions of Objects A, B, C,
and D in Figure 2. For one group of participants, A and B are placed in one category,
and C and D are placed in another category. For this group of participants, the three line
segments that comprise Part E and the three line segments that comprise Part F are diag-
nostic for categorization. Objects that belong in one category all have Part E, and
objects that belong to the other category all have Part F. For the second group of par-
ticipants, A and C are placed in one category, and B and D are placed in another cate-
gory. For these participants, Parts G and H are diagnostic for categorization. 

Categorization training could influence later part-whole judgments by highlighting
segmentations of whole objects that involve diagnostic parts. For example, if Part F in
Figure 2 was diagnostic during categorization training, then participants may be able to
decide relatively quickly that Part F is contained in the whole object in Figure 1, even
though it would be considered by Palmer’s quantitative model of part goodness to be
relatively unnatural. Experiment 1 tests for the influence of categorization training by
comparing the part-whole judgments involving Parts E and F in Figure 2 to those
involving G and H, as a function of the categorization training condition.

In Experiment 1, category parts and complements of those category parts are tested.
A category part is defined as one of the sets of three line segments that were used to
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Fig. 1. The whole on the left can be segmented into either natural parts or unnatural parts.
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construct the four objects to be categorized in Figure 2. Parts E, F, G, and H are all cate-
gory parts. Category parts can either be diagnostic (if they are relevant for the catego-
rization) or nondiagnostic. The complement of a part is defined as the line segments that
remain after the category parts are removed from a whole. Figure 3 shows the four pos-
sible types of trials. On “Present Category Probe” trials, participants are probed with a
category part that is present in the whole. On “Absent Category Probe” trials, partici-
pants are probed with a category part that is not present in the whole. On “Present
Complement” trials participants are probed with a complement (all of the line segments
except those belonging to the category part) that is present. On “Absent Complement”
trials, a randomly chosen complement to a category part within another whole is used
as a probe.

1.2.1. Method

There were two tasks in the experiment: categorization and whole-part decisions. In the
categorization phase of the experiment, 49 participants were shown distortions of
Objects A, B, C, and D as shown in Figure 2. Distortions of these objects were created
by adding one line segment at a random location so that it was connected to at least one
other line. Participants were asked to categorize an object into one of three groups.
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(E)
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(G) (H)

Fig. 2. Materials used in the categorization portion of Experiment 1. The four objects A, B, C,
and D are categorized into two groups. Four other objects (not shown) are categorized into a third
“junk” group. When A and B are placed in one group, and C and D are placed in the other, Parts
E and F are diagnostic for the categorization. When A and C are placed in one group, and B and

D are placed in the other, then Parts G and H are diagnostic.
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Following the response, a check mark was displayed if the participant was correct, or
an X appeared if the participant was incorrect. In one categorization condition, Objects
A and B belonged to one category and Objects C and D belonged to the other category.
In the other categorization condition, Objects A and C belonged to one category, and
Objects B and D belonged to the other category.

In the second phase of the experiment, trials consisted of displays with “wholes” and
“probes.” The participants’ task was to decide whether the probed part was contained in
the whole. The wholes consisted of one of the four category-defining parts (E, F, G, or
H) from the categorization task, plus three connected line segments (complements),
which were connected to the category part. The complements had no lines overlapping
any of the category parts. The probes were either category parts (nondiagnostic or diag-
nostic) or complements.

There were four types of trials in the whole-part decomposition task: present category
probe, absent category probe, present complement, and absent complement. For each of
the trials shown in Figure 3, the object on the left is the whole, and the object on the right
is the probe. In the first type of trial, the probe is a category part that is contained within
the whole object. In the second, the probe is the complement to the category part. In the
absent category probe trials, the probe is a category part, but is not contained within the
whole object. For the last type of trial, absent complement, the probe is a randomly cho-
sen complement from another object. Wholes were presented alone for 1000 ms, and
then a probe was added to the display. The participants’ task was to decide, as quickly
and accurately as possible, whether or not the whole contained the part.

1.2.2. Results and discussion

Figure 4 shows the mean response times to decide whether or not the part was present
in the whole, as a function of whether or not the whole contained a diagnostic category
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Fig. 3. The four types of possible trials in Experiment 1.
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part. Response times to respond to category parts were faster for wholes that contained
a diagnostic category part than for those that contained a nondiagnostic part. This diag-
nosticity advantage was significant only for present category parts. For complements,
responses were faster for present than absent complements. 

The results indicate that category learning influences perceptual sensitivity.
Participants were more sensitive at responding to parts within whole objects when those
parts were diagnostic. “Present” response times were significantly lower for diagnostic
than nondiagnostic parts, and “absent” response times tended (nonsignificantly) to be
lower as well. 

1.3. Experiment 2

Experiment 2 further explores the hypothesis that category learning alters the subse-
quent segmentation of objects into parts. Experiment 2 introduces a new control for cat-
egory parts: mirror-image reflections of category parts. During the part-whole judgment
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Fig. 4. Results of Experiment 1. Line segments were more readily identified as present in whole
objects when they were diagnostic during categorization training than when they were nondiag-
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task, participants were presented with category parts in some trials and reflections of
category parts in other trials. Figure 5 shows six types of trials that were used. On
“Present Category Part” trials, participants were presented with wholes that contained
parts that were either diagnostic or nondiagnostic during categorization. On “Present
Reflection of Category Part” trials, participants were presented with wholes and 
parts that were horizontal reflections (mirror images) of the category part trials. Finally,
other parts were also tested that were neither category parts nor reflections of category
parts. 

Reflections of category parts are useful controls because the naturalness of a part
within a whole remains invariant under reflection in Palmer’s (1977) model of part
goodness. For example, whatever the naturalness of Part P is in Whole W, Palmer’s
model predicts that the reflection of P should have the same naturalness in the 

658 Robert L. Goldstone et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

PartWhole

Present Category Probe

Whole Part

Absent Category Probe

Present Reflection of

Category Probe

Whole Part

Absent Reflection of

Category Probe

Whole Part

Present Cross-Parse Probe

Whole Part

Absent Cross-Parse Probe

Whole Part

Fig. 5. Sample trials used in Experiment 2. When reflected parts were tested, the whole objects
were also reflected. Cross-parse trials involve segmentations of a whole object that are incom-

patible with the segmentation suggested by the part presented during categorization.
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reflection of W. Palmer’s features for naturalness (e.g., cohesion, similarity, and prox-
imity of line segments) remain unchanged if both the whole and the part are rotated or
reflected in the same manner. In Figure 5, the “Present Category Probe” and “Present
Reflection of Category Probe” conditions are predicted by Palmer’s model to be equally
difficult.

However, if category learning can alter the way in which an object is segmented,
then it should be possible to change the quality of a part within a whole without much
change to the quality of the part’s reflection within the whole’s reflection. If the top part
of Figure 5 is diagnostic for categorization, then participants may be able to decide rel-
atively quickly that the top whole contains this part.

1.3.1. Method

The procedure for Experiment 2 was similar to that of Experiment 1. Fifty-seven par-
ticipants under the experimental conditions were given categorization training followed
by a part-whole judgment task. The categorization training was identical to that of the
first experiment, using the same stimuli (Figure 2). The two experimental conditions
were identical to the two groups in the first experiment. A third group of 38 participants
served as controls and received no categorization training.

The part-whole judgment task differed only slightly from that in Experiment 1. A
new condition was added, in which the whole and the part were reflected. In addition,
the parsing of an object was different: the probe was either a category part or a “cross-
parse” part. Figure 5 shows examples of the different types of probes and trials. In the
top two examples in Figure 5, the probe is a category part. These types of trials are iden-
tical to their comparable trials in Experiment 1. The middle two trials are similar to the
top trials, in that the probes are category parts. However, unlike the top trials, the whole
and the probe have been reflected (i.e., flipped horizontally). The last two examples of
trials are present and absent cross-parse probes. For “present cross-parse” trials, the
parsing of the whole into the cross-parse part is incompatible with the parsing required
for “present category part” trials. The cross-parse cuts across the parsing needed to
identify the category part, because the cross-parse part has an overlapping line segment
in common with the category part. When a cross-parse probe is present, it shares a line
with the category part contained within the whole. Absent cross-parse probes do not
share any lines with the category part contained within the whole object; rather, they
share a common line with one of the category parts that is not present within the whole.
While complement parts (Experiment 1) were the remains of the whole after a category
part was removed, the cross-parse parts used in Experiment 2 shared one line in com-
mon with the category part.

In this experiment, there were five factors of interest: type of probe (category or
cross-parse), diagnosticity of the category part contained within the whole (diagnostic
or nondiagnostic), diagnosticity of probe (diagnostic or nondiagnostic), trial type (pres-
ent or absent), and reflection (normal or reflected stimuli). The two values along each
of the factors occurred with equal frequency. 
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1.3.2. Results and discussion

Figure 6 shows the mean response times to decide whether or not the part was present
in the whole, as a function of whether or not the whole contained a diagnostic category
part. The baseline response times obtained from the control (no categorization) partic-
ipants for the different types of probes were subtracted from the other conditions. By
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Fig. 6. Results from Experiment 2. Category parts were more quickly identified as present in
whole objects when they were diagnostic during categorization training. Conversely, cross-parse
parts were more quickly identified as present in whole objects when the whole objects contained
a part that was nondiagnostic during categorization. Asterisks denote significant effects of diag-

nosticity.
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subtracting out this baseline, we control for differences between the category parts and
cross-parse parts in terms of intrinsic naturalness. The response times in Figure 6 are
negative because the control group generally took longer to respond than the catego-
rization groups. Thus, lower negative numbers are associated with greater advantages
over the control group. Considering only trials in which the probe was a normal cate-
gory part, participants were faster to respond “present” when the whole contained a
diagnostic category part than when it contained a nondiagnostic part. This result repli-
cates Experiment 1, in which participants were faster to respond to diagnostic than non-
diagnostic category probes.

Diagnosticity had a significant effect on present, normal cross-parse probes. For this
type of probe, response times were slower when the whole object contained a diagnos-
tic category part than when it contained a nondiagnostic part. This is the opposite of the
effect found for category probes, for which response times decreased for wholes con-
taining diagnostic compared to nondiagnostic category parts. 

Reflecting the stimuli had an effect on present, nondiagnostic category parts and
cross-parse probes. When the whole contained a nondiagnostic category part, times to
respond “present” were slower for normal category probes than for reflected ones. For
both diagnostic and nondiagnostic absent cross-parse probes, response times were
lower when the stimuli were reversed than when they were normal.

Categorization training had reliable effects on subsequent part-whole judgments,
consistent with the position that participants tend to segment objects into parts that have
been useful during categorization. The most straightforward effect of diagnosticity is on
trials where a normal (not reflected) category part is present in the whole object, and
participants are probed with this category part. On these trials, if the part was diagnos-
tic during categorization, participants are faster to respond than if it was nondiagnostic.

The positive influence of diagnosticity of category parts was not found for horizon-
tal reflections (mirror images) of the category parts. This result indicates a lack of trans-
fer from learning about one part to other similar parts. A part and its reflection share
commonly posited emergent features such as closure, angularity, length, height/width
ratio, and density. The lack of transfer to reflected parts suggests that categorization
learning sensitizes the particular three-line segments that are diagnostic rather than gen-
eral stimulus properties of the diagnostic parts.

The second influence of categorization training was that, if a whole object contained
a diagnostic part, then responses to present noncategory parts were slowed. In other
words, on some trials, a whole object contained both a part that was relevant during cat-
egorization training and an additional part that had never been seen during categoriza-
tion. If participants were probed with the never-before-seen part, they were relatively
slow to respond “present.” The critical aspect of the stimulus design that may explain this
result is that category parts and cross-parse parts always shared one line segment. For
example, in Figure 5, the category part in the top panel and the cross-parse part in the
bottom panel have one line segment in common. Consequently, any segmentation that
involved the category part was incompatible with the segmentation that involved the
cross-parse part. If category learning biased participants to see the whole as containing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Ch. 29: Perceptual and Semantic Reorganization during category learning 661

ELSE_COHEN_CH029.qxd  6/23/2005  2:04 PM  Page 661



the category part, then we would expect other, inconsistent segmentations of the object
to be inhibited. Even though diagnosticity has a harmful influence on part-whole judg-
ments involving new parts, this effect is consistent with the positive influence of diag-
nosticity. In short, object segmentations that are consistent with previously learned parts
are facilitated, and those that are inconsistent with previously learned parts are inhibited.

1.4. Conclusions on perceptual reorganization

These two experiments are generally consistent in indicating that concept learning
influences later perceptual part-whole judgments. Participants were more quickly able
to identify parts as being present in an object when they were relevant, rather than irrel-
evant, for an earlier categorization task. This effect could not be explained by a bias to
respond “present” because “absent” responses were never slowed, and were sometimes
facilitated, for diagnostic parts. The pattern of results in general suggests that the man-
ner in which an object is segmented into parts depends on the learned informativeness
of the parts.

On the basis of our results, we can ask whether categorization training improves the
response to previously relevant parts, or impedes the processing of irrelevant parts.
Evidence in favor of both processes was found in the experiments. In favor of training
having a positive effect on relevant parts, it was found in Experiment 1 that relevant
parts were identified as present or absent more quickly than either irrelevant parts, or
complements of relevant parts.

There is also convincing evidence that training causes irrelevant parts to be ignored
or rejected. In Experiment 1, participants were quicker to respond “absent” when a non-
diagnostic feature was present in the whole object than when a complement was present.
A similar bias to respond “absent” quickly was found in Experiment 2 when comparing
nondiagnostic normal category parts to reflections of these same parts. Even more per-
suasive evidence that irrelevant features are processed less effectively comes from the
comparison of normal parts and their reflections in Experiment 2. In Experiment 2, both
“present” and “absent” judgments were slow for nondiagnostic parts relative to reflec-
tions of those parts. “Present” and “absent” judgments for diagnostic parts were roughly
equal in speed to judgments about reflections of diagnostic parts. Thus, by comparing
judgments to their reflected controls, it becomes clear that one influence of categoriza-
tion training is to desensitize irrelevant parts.

This desensitization of irrelevant parts is particularly surprising because it requires
that the items should not be simply interpreted in terms of their diagnostic parts. Rather,
the nondiagnostic parts must also be registered at some level in order for it to be inhib-
ited. Although parsings of items into nondiagnostic and diagnostic parts are mutually
inconsistent because they involve overlapping line segments, participants seem to gen-
erate both parsings. Rather than simply being ignored, nondiagnostic information
seems to be actively suppressed. This conclusion is consistent with recent results show-
ing that alternative figure-ground interpretations of a display compete against one
another [Peterson and Lampignano (2003)].
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Our current results complement other related studies showing the influences of cat-
egory learning on the segmentation of objects. Hock, Webb and Cavedo (1987) showed
that category learning increased the likelihood of segmenting a pattern into parts that
were similar for patterns that were members of the same category. Finally, researchers
have shown that participants’ ability to perform a figure-ground segmentation depends
on their familiarity with the stimuli [Peterson and Gibson (1994), Vecera and O’Reilly
(1998), Peterson and Lampignano (2003), Vecera et al. (2004)]. People’s lifelong famil-
iarity with objects facilitates their ability to extract these objects from surrounding con-
text and treat them as figures [Schyns and Murphy (1994)].

If our results are best explained by postulating that people create perceptual units for
often-repeated patterns that are useful for categorization, one question that remains is,
“How are these new units acquired?” Some researchers [Shiffrin and Lightfoot (1997),
Goldstone (2000)] refer to a process of perceptual unitization by which conjunctions of
stimulus features are “chunked” together so that they become perceived as a single
whole unit. Simple co-occurrence of line segments is not sufficient for their unitization;
nondiagnostic and diagnostic parts occur equally often during categorization. Within
this framework, the sensitization of diagnostic over nondiagnostic features must be due
to a unitization process that depends on categorical relevance as well as co-occurrence
of features.

Mozer et al. (1992) have developed a connectionist model that learns how to seg-
ment objects. Their MAGIC system learns how to group features based on a set of pre-
segmented examples. Object parts that belong to the same segment are represented in
MAGIC by units that have the same phase of activation (they are firing in synchrony).
Our experiments provide support for MAGIC’s flexible, rather than fixed, segmentation
procedure. Mozer (1994) added a learning principle to MAGIC that does not require
explicit feedback to be provided about part segmentations. In this new model, objects
tend to be segmented into parts that are uniform across instances. According to his reg-
ularity principle, features within a natural part tend to have higher correlations in their
structures than do features from different parts [for a similar principle, see Schyns and
Murphy (1994)]. This newer approach shows even more promise of being able to
account for our results because our categorization training does not provide explicit
feedback about what segments should be bound together, but it does provide informa-
tion about co-occurrence relations between line segments. Again, in order to account for
our experiments, this model would have to incorporate information about the catego-
rization of objects, and not just relations between features within an object.

Goldstone (2003) presents a model of unitization, and the complementary process of
differentiation, that does take into account the categorization of objects as well as unsu-
pervised statistics across the entire set of objects. It possesses units that intervene
between inputs and category outputs and can be interpreted as learned feature detectors.
The CPLUS model is given a set of pictures as inputs, and produces a categorization of
each picture as output. Along the way to this categorization, the model comes up with
a description of how the picture is segmented into pieces. The segmentation that
CPLUS creates will tend to involve parts that (1) obey the Gestalt laws of perceptual
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organization by connecting object parts that have similar locations and orientations, (2)
occur frequently in the set of presented pictures, and (3) are diagnostic for the catego-
rization. The network builds detectors at the same time as it builds connections between
the detectors and categories. The psychological implication is that our perceptual sys-
tems do not have to be set in place before we start to use them. The concepts we need
can and should influence the perceptual units we create.

2. Semantic reorganization during category learning

Several models of object perception have assumed that we recognize objects by com-
pounding primitive elements such as features [Treisman and Gelade (1980)] or shapes
[Biederman (1987)]. Likewise, many theories of conceptual representation have also
been based on a fixed set of primitive semantic concepts [Schank (1972), Wierzbicka
(1992)]. Just as we have favored approaches with adaptive perceptual elements, we have
been led by our research to conclude that conceptual elements are similarly adaptive.

2.1. Integral versus separable dimensions

Our second line of research explores the flexibility of conceptual dimensions as they apply
to classification. There has been a long history of research into how pairs of dimensions are
processed, starting with Garner (1974, 1976) and Monahan and Lockhead (1977). Garner
made the distinction between separable dimensions, for which one dimension can be
attended to while the other is ignored, and integral dimensions, for which such selective
attention is impossible. This distinction was based on patterns of results in classification
tasks developed by Garner (1974). In the “correlated” task, values on both dimensions were
varied together to form the stimulus set. For example, if the dimensions were size and
shape of figures, then the correlated task would consist of large squares in one category and
small circles in the other category. In the orthogonal (“filter”) task, the categorization rule
depends on only one dimension and the other, irrelevant, dimension must be ignored. For
example, figures might be categorized based on size (large vs. small) regardless of their
shape (square vs. circle). Performance on these tasks was compared to a univariate (“con-
trol”) task in which the stimuli were categorized on a single dimension with no variation
in the irrelevant dimension.

In these tasks, one of two patterns often emerged for a given pair of dimensions. For
integral dimensions (e.g., saturation and brightness), the correlated task was performed
better than the control task, and the filter task was performed worse than the control task.
For separable dimensions (e.g., size and brightness), the correlated and filter task per-
formances were approximately equal to the performance on the control task. The degree
of integrality of the stimuli was judged according to the amount of facilitation in the cor-
related task and the amount of interference by the irrelevant dimension in the filter task,
as compared to the control task. The interference of the irrelevant dimension can be
understood as the result of an inability to selectively attend to the relevant dimension.
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Likewise, the benefit of the redundant information in the correlated task could be due to
both dimensions being used to perform the task, even though only one dimension is log-
ically necessary. Monahan and Lockhead (1977) proposed that stimuli consisting of
integral dimensions are initially processed in terms of overall similarity and then in terms
of individual aspects. The reverse may be true for separable dimensions. 

King, Gruenwald and Lockhead (1978) studied performance on the Garner classifi-
cation tasks for animal terms based on the dimensions of size and ferocity. They found
that the correlated task was performed better than the control task, which was per-
formed better than the filter task. They interpreted the pattern of results as an indication
of integral dimensions. 

2.2. Experiment 3

To investigate the effects of category training on the integrality of semantic dimensions
such as those used by King et al. (1978), we used a training-transfer paradigm using the
correlated, filter, and conjunctive classification tasks. As Figure 7 shows, in the corre-
lated task, either dimension can be used to perform the classification, or both can. In the
filter task, only one dimension is relevant and the other dimension is irrelevant. In the
conjunctive task, both dimensions are necessary. We hypothesized that the correlated
task would induce more integral processing of the semantic dimensions since a con-
junction of values indicates the category membership and this should facilitate the use of
both dimensions as a unified single dimension. The conjunctive task should also induce
a more fused representation of the two dimensions since both dimension values must be
attended to in order to make a category choice. In the filter task, only one dimension is
relevant to the categorization, so we hypothesized that this should induce a more sepa-
rate use of the two dimensions. We measured these effects by training participants on one
task (correlated, filter, or conjunctive) and then transferring them to a different task (cor-
related, filter, or conjunctive). If category training can affect the integrality of semantic
dimensions, then positive transfer should occur if participants are trained on an integrat-
ing task (correlated or conjunctive) and then transferred to the other integrating task.
Negative transfer should occur if participants are trained on an integrating task (corre-
lated or conjunctive) and then transferred to the separating task (filter) or vice versa.

2.2.1. Method

Three word sets of 40 words each were designed from the categories of animals, vehi-
cles, and clothing. For each word set, two dimensions were used. Two values were des-
ignated for each dimension, and the two dimensions were crossed, resulting in four cells
with ten words in each cell (see Table 1 for the vehicles example). The dimensions were
ferocity and sociability, capacity and speed, and warmth and casualness for the animal,
vehicle, and clothing word sets, respectively. 

One hundred and sixteen participants performed a training task followed by a test-
ing task for each of the three word sets. Each of the three tasks in training was paired
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Fig. 7. The design of the training (left column) and testing tasks (right column) used in
Experiments 3 and 4. Participants were transferred to a task that differed from the training task.
This results in six possible train-test combinations. Each participant was given a different com-

bination for each of the three word sets.

Table 1
‘Vehicle’ word set stimuli for each dimension-value combination in Experiments 3 and 4

Only a few passengers Many passengers

bicycle cart sailboat ferry
carriage rowboat trailer escalator
raft canoe yacht gondola

Slow tractor dogsled riverboat balloon
wagon skateboard elevator barge

pickup biplane bus subway
car tank streetcar submarine

Fast taxi speedboat van transport
jeep helicopter train trolley
motorcycle rocket ship airline blimp
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with one of the two different tasks in testing, resulting in six training-testing conditions
(see Figure 7). In the correlated task, the categorization rule was based on the combi-
nation of two values on the dimensions that varied together. Words from two diagonally
positioned cells were shown, but not from the other two cells along the reverse diago-
nal. In the filter task, the categorization rule was based on a single dimension that
divided the set into two categories with two cells in each category. In the conjunctive
task, the categorization rule was based on the combination of two dimensions for
Category X (one cell), while the remaining three cells formed Category Y. Table 2
shows the categorization rules for the set of vehicle words. Before each task, partici-
pants were told the general category (e.g., vehicles), the rule for both categories (e.g.,
Table 2), and the list of words for each category listed in columns (e.g., Table 1). 

The participants were given 160 trials in each of the three training tasks and 120 tri-
als in each testing task. The training tasks were divided into four blocks of 40 trials
each. The testing tasks were divided into three blocks of 40 trials each. For each block,
the words were selected with equal frequency from each cell and presented in a ran-
domized order.

On each trial, the word was presented on the computer screen with the first letter at
the center of the screen. Participants made their category choice using the number keys.
They were given feedback on their choice using a check mark for correct answers and
an X for incorrect answers. 

2.2.2. Results and discussion

The average response time results for correct trials are shown in Figure 8. During train-
ing, the correlated and conjunctive tasks were both performed significantly faster than
the filter task. The correlated testing task was not performed significantly differently
based on the training task that preceded it. Performance on the conjunctive testing task
was significantly more accurate when it was preceded by the correlated training as com-
pared to the filter training.

The performance during training provides a baseline to which we can compare the
relative effects of training on that task. The correlated training had no significant effects
on the conjunctive testing task compared to initial conjunctive training performance. The
filter training had a significant negative effect on the conjunctive testing task compared
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Table 2
Category descriptions for each task in Experiment 3

Task Category X Category Y

Correlated Vehicles that are capable of having only Vehicles that are capable of having many 
a few passengers and slow passengers and fast

Filter Vehicles that are slow Vehicles that are fast
Conjunctive Vehicles that are capable of having only Vehicles that are not both capable of having

a few passengers and slow only a few passengers and slow
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to the initial conjunctive training performance for accuracy and response time. The filter
training also had a negative effect on the correlated task compared to the correlated train-
ing task performance that was significant in terms of response time. The correlated train-
ing had a significant negative effect on accuracy of the filter testing task compared to
filter training accuracy. The conjunctive training also had a significant negative effect on
the accuracy of the filter testing task compared to filter training accuracy. 

The filter task training resulted in negative transfer to the conjunctive task and the
correlated task. The correlated task training did not have any effect on transfer to the
conjunctive task. Relative to initial performance, we have evidence of negative transfer
of training on the filter task for both the conjunctive and correlated tasks and negative
transfer of training on the correlated and conjunctive tasks for the filter task. This
matches the prediction that there would be negative transfer effects between tasks
inducing separation of dimensions and those inducing fusion of dimensions.

2.3. Experiment 4

Experiment 3 showed that the effects of classification task training on subsequent test-
ing tasks are consistent with an adaptation of the conceptual dimensions. However, two
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possible types of adaptation could be taking place: a change in the representation of
dimensions for individual word exemplars of the category, or a change in the represen-
tation of the dimension at the category level. In Experiment 4, this question is explored
using a design in which new words are introduced during the test tasks.

The design of the tasks was the same as in Experiment 3, except that new exemplars
were presented in the testing phase that had not been presented in the training phase.
We hypothesized that training in a task that induces processing of two semantic dimen-
sions in an integral manner (correlated and conjunctive) will result in positive transfer
to the other fusion-inducing task. Conversely, negative transfer is expected from train-
ing in the task that is thought to induce separate processing of dimensions (filter) to the
fusion-inducing tasks (correlated or conjunctive) and vice versa. We also hypothesized
that the same pattern of results in the testing tasks would be found for the both the novel
words and the words previously seen during training although the negative transfer
effects may be more pronounced for words that had previously been seen.

2.3.1. Method

The materials were similar to those used in Experiment 3, except that the number of
words in each domain was doubled to 80. The three domains were animals, activities,
and things. The animal words were again placed in a 2 × 2 table along the dimensions
of ferocity and sociability. The activities word set consisted of sports and hobbies that
were classified according to how physical the activity is (‘strenuous’ vs. ‘light’) and the
riskiness of the activity (‘risky’ vs. ‘safe’). The things word set consisted of various
objects and materials that were classified according to their naturalness (‘natural’ vs.
‘artificial’) and their fluidity (‘solid’ vs. ‘fluid’). All of the categories were pretested by
having participants rate words on two dimensions and using these ratings to select
words that fell most clearly into one category or the other.

Each of the 248 participants was given only one of the combinations of training and
testing tasks. They repeated the particular train-test condition for each of the three word
sets. All other aspects of the task design were the same as in Experiment 3 except for
the use of new words in the testing phase. In the training task, only half of the available
words in each cell were presented (10 words). In the testing task, all the available words
for the cells used in the task were presented. The category frequency was balanced in
each task and the order of the word sets and word presentations was randomly selected
for each participant.

2.3.2. Results and discussion

The response times for the experiment are shown in Figure 9. The correlated testing
task was performed significantly slower when preceded by the filter training than by the
conjunctive training, but this effect was limited to previously trained words only. In the
filter testing task, the previously trained words were performed more accurately when
preceded by the correlated training than the conjunctive training. In the conjunctive
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testing task, the novel words were judged faster when preceded by correlated training
than filter training. Likewise, old words were categorized more accurately and faster
when preceded by correlated training than filter training.

As in Experiment 3, the training task performances were compared using the average
performance over each of the three blocks. And again, the correlated task was performed
more accurately and faster than the conjunctive task. In turn, the conjunctive task was per-
formed more accurately and faster than the filter task. Thus, for the initial training task per-
formance, the same pattern of results was found as in Experiment 3: the correlated task
elicited the best performance followed by the conjunctive task, followed by the filter task.

Novelty of the words during the testing task was the crucial factor tested in
Experiment 4. Overall, words previously seen in training were responded to more
quickly than new words and there was a larger range of improvement for the speed of
response to new words than old words. These effects are not surprising since the old
words presumably were made easier to classify in the testing task by the prior exposure
in the training task. Therefore, more improvement is expected in the new words.

In the interactions between novelty and condition, there was little difference between
the old and new words. For novel words, the effect of transfer is based on a shift in the
integrality or separability of the semantic dimensions alone, and not due to a direct
change in the specific item representation since the words were not present in training.
The degree to which the training induced a change in the dimension representation over
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and above the changes to individual item representations can be measured by the degree
to which the same pattern of results is found for both old and new words. The corre-
lated testing task revealed a benefit in terms of accuracy from the conjunctive training
task compared to filter training for old words, but not for new words. The conjunctive
task exhibited a positive transfer effect on old words from the correlated training com-
pared to filter training, in terms of both accuracy and response time, and on new words
in terms of response time. These results suggest that changes may occur in both the item
representations and the semantic dimensions.

3. Conclusions on semantic reorganization

Both of the experiments in this series obtained the same result for the initial task perform-
ances. The correlated task was performed the best, followed by the conjunctive task, and
the filter task was performed least well. The fact that both the correlated and conjunctive
tasks were performed better than the filter task is likely the result of the dimensions’ ini-
tially being integrally processed such that they can be easily processed together but not so
easily processed separately. These results echo the findings of King et al. (1978).

Negative transfer effects were obtained in the filter task following conjunctive or
correlated training. Likewise, negative transfer effects were obtained in the correlated
and conjunctive tasks following filter training. These effects support the hypothesis that
training may induce a change in the integrality of the semantic dimensions.

Experiment 4 tested whether the adaptation occurs on an individual linguistic con-
cept level, whereby the features of a particular item become integrated, or on a seman-
tic dimension level, whereby changes generalize to other concepts defined by the
altered dimensions. While some effects did not generalize to concepts not seen during
training, correlated training had a positive effect on the conjunctive testing task relative
to the filter training effects for both old and new words, suggesting that changes took
place at the level of the semantic dimensions.

Experience using semantic dimensions in classification tasks can alter the process-
ing of those dimensions. There were shifts in the apparent integrality of the dimensions
such that tasks that incorporate both dimensions together may create a more fused rep-
resentation of the dimensions. Other tasks that require the use of a single dimension and
the discounting of an irrelevant dimension tend to cause a separated representation of
the dimensions. More generally, our studies provide a methodological tool for examin-
ing how any number of semantic dimensions across domains are processed and adapted
during classification tasks.

4. Integrating perceptual and semantic reorganization

Together, the four reported experiments suggest an alternative approach to theories that
have posited fixed sets of perceptual [Treisman and Gelade (1980), Biederman (1987)]
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or semantic [Schank (1972), Wierzbicka (1992)] features. According to this alternative,
category learning not only uses existing object descriptions, but also alters object
descriptions to facilitate the learning. Understandably, the claim that new perceptual or
semantic features are created during category learning has been controversial [Schyns,
Goldstone and Thibaut (1998)], and we would like to dispel the notion that feature
creation is a magical process, or that once feature creation is allowed, then “anything
goes.”

4.1. Characterizing psychological features

To understand what we mean by feature creation, it is helpful to first analyze what we
mean by “feature.” By “feature” we mean a psychological unit of perception or thought.
“Dimensions” are also psychological entities, but refer to a set of values that can be ordi-
nally positioned. Brightness, then, is a psychological dimension only because it is
processed as a unit. If luminance energy were not psychologically isolated, then there
would not be a (psychological) dimension of brightness reflecting this physical quantity.

If features and dimensions are units of perception and thought, then we can ask what
physical aspects are bundled together into these psychological units. Features can be
interpreted as packages of stimulus elements that are separated from other sets of ele-
ments and that reflect the subjective organization of the whole stimulus as a set of com-
ponents. Features can be revealed using several experimental operationalizations. If two
pieces of physical information, X and Y, are packaged together in the same psycholog-
ical feature and Z is not, then several empirical predictions follow. We predict that
searching for X and Y simultaneously should be easier than simultaneously searching
for X and Z [Treisman and Gelade (1980)]. We predict that searching for X should be
affected by contextual variation to Y more than to Z [Gauthier and Tarr (2002)]. And
we predict that categorization based on X should be slowed more by irrelevant varia-
tion to Y than to Z [Garner (1974, 1976)]. It should be easier for people to attend to X
and Y simultaneously than X and Z. All of these operationalizations tie into the notion
that X and Y are being processed together.

It is also noteworthy that all of these operationalizations imply a continuum of fea-
turehood. There will be various degrees to which stimulus aspect Y intrudes upon or
facilitates processing of X. Although we conceive of features as packages of stimulus
components, we are not proposing that packages are completely discrete or mutually
exclusive. Rather, they are packages in the same way that cliques can be circled in
social networks or regions can be identified in brain neural networks. In all three
domains, a unit (feature, clique, or region) is characterized by relatively dense within-
unit connectivity among elements and relatively sparse connectivity between elements
within the unit and external elements. Features are useful idealizations because they
capture the notion of elements that are densely interconnected, but it is important to
recognize that (1) features (e.g., densely interconnected clusters) may exist at multiple
levels of resolution, (2) elements processed as one feature may not have uniform inter-
connectivity to other elements of the same feature, and (3) the internal integrity of dif-
ferent features may vary.
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4.2. Characterizing featural change

Having characterized psychological features, we can now turn to the meaning of fea-
ture creation. By this account, feature creation simply involves alterations to the organ-
ization of stimulus elements into features. Figure 10 shows two ways that this can
happen. By unitization, stimulus elements (circles) that were originally processed as
three different features (ovals) come, with practice, to be processed as only two fea-
tures. Elements that were originally processed separately are now processed together
[Shiffrin and Lightfoot (1997), Goldstone (2000)]. By differentiation, the same three-
element object comes to be processed as four features. Elements that were originally
psychologically fused together become isolated [Smith and Kemler (1978), Smith,
Gasser and Sandhofer (1997), Goldstone and Steyvers (2001)].

From Figure 10 it may appear like there are two separate, perhaps contradictory,
tracks for featural change. In fact, not only are unitization and differentiation compati-
ble with each other, but they often occur simultaneously. They are compatible because
both processes created appropriate-sized units for a task. If elements covary together
and their co-occurrence predicts an important categorization, then the elements will
tend to be unitized. If elements vary independently of one another and they are differ-
entially relevant for categorizations, then the elements will tend to be differentiated.
Experiments 1 and 2 are good examples of simultaneous unitization and differentiation.
During category learning, the three line segments that jointly indicate a category are
unitized together, and are isolated from other line segments in the objects to be catego-
rized. Accordingly, we do not support theories that propose monolithic developmental
trends toward either increasingly unitized [Gauthier and Tarr (2002)] or differentiated
[Kemler and Smith 1978)] representations. We believe that both occur, and furthermore,
that the same learning algorithm can do both simultaneously [Goldstone (2003)].
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Unitization

Differentiation

Fig. 10. Two varieties of featural reorganization. Stimulus elements are shown by circles and
psychological packages of those elements – in features – are shown by ovals. By unitization,
stimulus elements that were once processed as different features come to be processed as a sin-
gle feature. By differentiation, stimulus elements that were once processed as the same feature

come to be processed by multiple features.
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Features are not created “out of nothing.” They are reorganizations of stimulus ele-
ments. A critic might respond, “Then how is your account any different from the stan-
dard fixed-features approach in which primitive elements are combined in new
arrangements to create object representations?” For now, we will give three replies [see
Schyns et al. (1998) for others]. First, by our account, features are not (always) created
from a set of psychological primitives. Often they are created from stimulus elements
that originally have no parsing in terms of psychological primitives. For example, peo-
ple can create a “saturation” detector that is relatively uninfluenced by brightness even
if there was originally no detector that had this response profile [Burns and Shepp
(1988)]. To be sure, if brightness and saturation affected a brain identically, then there
would be no way to develop a detector that responded to only one of these properties.
However, as long as two properties have some differential effects, then increasingly dif-
ferentiated detectors can emerge, if the training encourages their isolation. The critic
might counter, “But dimensions that are fused together at some point in perceptual pro-
cessing can never be split later.” By analogy, once red ink has been poured into blue ink,
there is no simple procedure for later isolating the blue ink. Fortunately, this analogy is
misleading, and there are several computational models that can differentiate fused
dimensions [Smith et al. (1997), Edelman (1999), Goldstone (2003)]. For example,
competitive learning networks differentiate inputs into categories by developing spe-
cialized detectors for classes of stimuli [Rumelhart and Zipser (1985)]. Random detec-
tors that are slightly more similar to an input than other detectors will learn to adapt
themselves toward the input and will inhibit other detectors from doing so. The end
result is that originally homogeneous detectors become differentiated and heteroge-
neous over the course of training. 

Second, feature creation often involves delineating spatial regions rather than com-
posing elements. For example, a bounded segment of a curve can be extracted by iden-
tifying its end points by rapid changes in curvature [Hoffman and Richards (1984)].
This extraction does not require piecing together elements. What would these putative
elements be – line segments or pixels? There is good evidence that neither small line
segments nor pixels are functionally useful features for object recognition. They are too
low-level to provide diagnostic evidence for actual objects. Moreover, pixels cannot be
true features because they are not identified by intrinsic attributes like ‘red’ or ‘4 cm.’
Their essential nature depends upon their location in spatial media. Much of feature cre-
ation involves forming bounded regions in a spatial medium rather than symbolically
composing atomic elements.

Third, there are clear-cut cases, where something like new perceptual devices are
created. By becoming physically modified, systems can learn to represent properties
that they were unable to represent originally. In evolutionary time, organisms developed
ears sensitive to acoustic properties that no early organisms (e.g., bacteria) could detect.
This is also possible within a system’s own lifetime. The cybernetician Gordon Pask
built a device that could create its own primitive feature detectors. It consisted of an
array of electrodes partially immersed in an aqueous solution of metallic salts. Passing
a current through the electrodes caused dendritic metallic threads to grow. Eventually
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the threads created bridges between the electrodes, which subsequently changed the
behavioral repertoire of the device. Cariani (1993) reports that within a half a day,
the system could grow to be sensitive to a sound or magnetic field. With more time, the
device could discriminate between two musical pitches. Similarly, there is good neuro-
physiological evidence that training can produce changes in the early somatosensory,
visual, and auditory cortex [see Goldstone (1998) for a review]. While these changes
are not as radical as sprouting a new ear, they are existence proofs that early perceptual
devices can be systematically and physically altered by the environment to change their
representational capacities.

4.3. Prospects for synthesizing perceptual and semantic reorganization

We have juxtaposed two series of experiments with the intention of highlighting simi-
larities and differences between the perceptual and semantic reorganization that accom-
panies concept learning. In the first series of experiments, people apparently create
shape complexes during category learning, and use those shape complexes as building
blocks for describing subsequently presented objects. In the second series, people cre-
ate either fused or separated semantic descriptions that subsequently affect their later
categorizations. Is the process of creating a three-line-segment complex similar to cre-
ating an integrated representation of the timidity and sociability of animals, or the speed
and capacity of vehicles?

One apparent discrepancy between perceptual and semantic unit construction is that
there are strong visuospatial constraints on perceptual unit creation. People have a
strong bias to create units that obey Gestalt laws of proximity, similarity and good con-
tinuation. These biases are needed for computational models that aim to create psycho-
logically plausible perceptual units [Goldstone (2003)], and are useful in limiting the
combinatorial explosion of potential units that could be built. At first sight, semantic
units do not have any corresponding constraints on their construction.

Upon further reflection, we believe that there are biases affecting semantic unit con-
struction, and that these biases play a loosely analogous role to the Gestalt laws of per-
ceptual organization. Informal interviews with some of the participants in Experiments
3 and 4 suggest that in the conjunctive and correlated conditions, participants often cre-
ated conceptions that fused the two component dimensions into a semantic Gestalt. For
example, for the animals category, people often created a schema for social, timid ani-
mals that consisted of groups of small animals huddled together for protection. For the
vehicles category, participants sometimes created a fused notion of fast, high-capacity
vehicles by imagining mass transportation systems. By this account, just as it would be
difficult to create a unit for two line segments that are far apart, of different thicknesses,
and not part of a continuous path, it should be difficult to create semantic units for hard-
to-relate semantic dimensions such as Jorge Luis Borges’ (1966) dimensions of ani-
mals: “those that tremble as if they were mad” and “those that have just broken a flower
vase.” Furthermore, we believe that these constraints on semantic unit construction are
important for creating nontrivial units. There is a trivial sense in which any features,
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such ‘square’ and ‘blue,’ can be combined to create a conjunctive unit ‘square and blue.’
However, these conjunctions are inert, being no more than the Boolean concatenation
of their elements. For these conjunctions, the standard compositional account of unit
construction is perfectly adequate. However, semantic reorganization often differs from
logical combination, and the elements interact to create complexes with emergent prop-
erties. Much of the recent work on knowledge-based categorization provides insight
into the development of semantic complexes [Murphy (2002)].

Much of the most important work in characterizing representational reorganization
will involve specifying mechanisms that are tightly tied to particular classes of materi-
als. Still, we are sanguine about the heuristic utility of attempting to unify perceptual and
semantic reorganization processes. Complementary mechanisms of differentiation and
unitization are found for both. Both are guided by unsupervised statistics and supervised
feedback provided by categorizations. Moreover, it may prove difficult to draw a clean
dividing line between perceptual and conceptual processing [Goldstone and Barsalou
(1998)], not just because we lack precise enough empirical diagnostics, but because they
emanate from a shared substratum.
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