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Proximity and precedence in arithmetic

David Landy
Department of Psychology, University of Richmond, Richmond, VA, USA

Robert L. Goldstone
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

How does the physical structure of an arithmetic expression affect the computational processes
engaged in by reasoners? In handwritten arithmetic expressions containing both multiplications
and additions, terms that are multiplied are often placed physically closer together than terms that
are added. Three experiments evaluate the role such physical factors play in how reasoners construct
solutions to simple compound arithmetic expressions (such as “2 + 3 × 4”). Two kinds of influence
are found: First, reasoners incorporate the physical size of the expression into numerical responses,
tending to give larger responses to more widely spaced problems. Second, reasoners use spatial infor-
mation as a cue to hierarchical expression structure: More narrowly spaced subproblems within an
expression tend to be solved first and tend to be multiplied. Although spatial relationships besides
order are entirely formally irrelevant to expression semantics, reasoners systematically use these
relationships to support their success with various formal properties.

Keywords: Symbolic reasoning; Mathematical cognition; Embodied cognition.

One of the central challenges facing the cognitive
study of mathematical reasoning is symbolic
interpretation: How do people use symbol systems
as carriers of meanings? In the domain of math-
ematics, as in other formal languages, explicit gram-
mars specify how compound expressions are to be
interpreted in terms of their basic constituents.
Despite the simplicity and explicitness of these
rules, numerous studies have noted that difficulties
generating solutions from mathematical expressions
often result from failures to correctly interpret sym-
bolic notation (Koedinger & MacLaren, 1997;

Koedinger & Nathan, 2004; Sfard & Linchevski,
1994).

Cognitive theories of abstract formal interpret-
ation often assume that individuals follow formal
logics by explicitly representing rules of combi-
nation in some internal symbolic medium and
then applying those rules to structured symbolic
representations (Fodor, 1975; Marcus, 2001). In
this view, the role of perception is principally to
identify and represent for internal consumption
individual symbols written in the external notation.
If interpretation of structured notations is a result
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of the application of formally expressed rules, then
expressions that require more, or more difficult,
rules are predicted to be harder to solve than
simpler expressions, but perceptual factors should
only affect the transcription of individual
symbols from the visual notation to an internal
representation. Thus, the hierarchical structure
implicit in a phrase such as “3 + 5 × 4” results
from the action of a set of represented rules.

In addition to their formal properties, com-
monly used notational systems have many informal
properties. The properties we are most interested
in are those that relate pairs or sets of symbols:
Pairs of symbols may be similar or dissimilar, or
one symbol may be larger or more salient than
another, or physically close together or far apart.
This paper focuses on the impact of physical
spacing on arithmetic computation of simple
expressions involving addition and multiplication.
There are several reasons to expect spatial proper-
ties to impact arithmetic computations. First, prior
work has shown that spatial properties interact
with mathematical reasoning in related but dis-
tinct domains (Kirshner, 1989; Landy &
Goldstone, 2007a). Second, spatial layout affects
other psychological properties of expressions,
such as overall physical size and perceptual group-
ings. Finally, spatial properties are an obviously
essential part of any physical notation system, but
in mathematics in particular, layout plays an
important role in constituting meaning. For
instance, subscripts and superscripts depend on
their spatial positions and sizes for appropriate
interpretation. Even when spacing is not formally
required for interpretation, conventions often
govern typical spacing.

Syntax evaluation in formal languages is well
captured by rules expressed in abstract languages,
as suggested by traditional cognitive theory.
However, several authors have suggested that the
actual process of syntactic parsing in human rea-
soners is often organized around visual principles
and implemented by largely visual and motor
mechanisms (Endress, Scholl, & Mehler, 2005;
Landy & Goldstone, 2007a, 2007b). These mech-
anisms are proposed to be subject to the same
constraints and biases as the rest of the visual

system and to produce sharply limited kinds of
grammars, consonant with the biases of the
visual system. The question is not whether sym-
bolic or visual processes are important in math-
ematics; clearly both are. Rather, the question is
one of where and how formal grammatical
interpretations occur in the adult interpreter.

It is very plausible and usually assumed in cog-
nitive models that the role of vision is limited to
symbol identification and precedes substantive
symbolic processing. This perspective suggests
that physical layout, so long as it does not interfere
with the identification of symbols, should have no
effect on arithmetic computation. Although not
essential to any particular theory, this view has
generally served as a default in discussions of sym-
bolic reasoning (e.g., Anderson, 2005; Koedinger
& MacLaren, 1997; Stenning, 2002). That is,
many models of mathematical reasoning assume
that the initial representation for symbolic trans-
formation is a straightforward transduction of
the presented notation. Such models do not a
priori predict any result of spacing on performance.

Kirshner (1989; see also Kirshner & Awtry,
2004) found evidence that novel notations for
basic arithmetic operations are learned more
easily when they conform to certain spacing prac-
tices. In particular, Kirshner reports that learners
more easily applied order of operations rules (e.g.
multiplying and dividing before adding and sub-
tracting in an expression) when high-precedence
operations were more closely spaced. Kirshner
suggests that this spacing convention closely
approximates that found in typical mathematics
notations and that our knowledge of operation
ordering is bound to the features (proximity, in
this case) that generally correspond to them. On
this view, it is the regularity of physical features
in the environment that leads to the connection
between close spacing and multiplication.
Kirshner and Awtry (2004) propose the image of
a hybrid learner, able to learn declarative rules,
but also (and largely separately) sensitive to stat-
istical environmental regularities, such as visual
similarities and proximities.

Landy (2007; see also Goldstone, Landy, & Son,
2010) suggested an alternative conceptualization
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of the role of space in formal computation. This
perspective suggests that rules in symbolic environ-
ments are themselves often implemented by low-
level visual–motor processes. Visual regularities
are then involved in algebraic reasoning because
visual processes form the primitive operations that
together constitute syntactic reasoning, rather
than because regularities are typically present in an
environment that receives the attention of a
general statistically sensitive (e.g., connectionist)
learner. Landy (2007) formalized this idea in a com-
putational model of arithmetic computation. In this
model, practised arithmetic computation is treated
as an interplay between obligatory calculation pro-
cesses, visualization, and promultiplication biases
in visual attention and grouping. When people
look at pairs of numbers, both their sums
(LeFevre, Bisanz, & Mrkonjic, 1988) and their pro-
ducts (Rusconi, Galfano, Speriani, & Umiltà, 2004;
Thibodeau, LeFevre, & Bisanz, 1996) are auto-
matically activated. Rusconi et al. (2004), in par-
ticular, found that multiplications are highly
automatically activated, but only when the operands
are in the typical horizontal spatial arrangement.
The model assumes that similar automatic processes
govern calculation in complex expressions:
Subproblems that receive the most attention are
most likely to activate their solutions. Individual
problems are coded in terms of both perceptual
and categorical features, including operands and
operations, but also including vertical symmetry (a
distinctive property of “tie” problems such as 7 +
7) and well-groupedness. These features drive the
obligatory activation of sums and products.

On this account, explicit knowledge of the rules
of precedence does not drive ordinary computation
behaviours. Multiplications form better perceptual
groups, and the signs denoting multiplication in
arithmetic better attract attention. Both of these
factors cause multiplications to be performed
earlier than additions, which ensures that the
order of operations is typically respected. Further
supporting this perspective, Landy and Goldstone
(2007b) demonstrated that, in addition to
spacing, other properties that bias perceptual
grouping (such as similarity, connectedness, and
common region) also impact accuracy in algebra.

These properties as such are not typically present
in algebraic expressions, or at least do not seem
to be correlated with formal computation order;
nevertheless, they impact both visual grouping
and overall accuracy in an algebra task.

Spacing of addition and multiplication signs
in typical contexts

This paper comprises an empirical exploration into
how variation in the spacing of arithmetic
expressions involving addition and multiplication
affects computation; it is worth noting briefly
how such expressions are typically spaced in eco-
logical contexts. This issue is somewhat compli-
cated by the fact that although addition is
typically represented with a + in formal contexts,
there are at least four common conventions for
multiplication. In algebra, multiplication is
usually denoted by concatenation, as in ax + b, in
which no operation sign is used at all, or the dot,
as in a . x + b. In handwritten and typeset arith-
metic, the cross (×) seems to be more typical
than the dot (and concatenation is ambiguous);
in computer languages, the asterisk ∗ is frequently
used to represent multiplication.

Algebraic notations tend to space multipli-
cations substantially closer than additions.
Omitting an operation sign naturally causes the
operands to be placed quite close together; math-
ematical typesetting programs such as LaTeX
also typically place the operands surrounding a
dot closer together than those around a +. Thus,
in algebra, multiplications are typically closely
spaced, relative to additions.

In arithmetic, this pattern is not so clear-cut. The
cross sign, which is used nearly universally in text-
books and in programs such as LaTeX, is generally
spaced uniformly with the + sign, as in 5 × 3 + 2.
Landy and Goldstone (2007a) reported that in
handwritten expressions, cross signs predominated
in arithmetic expressions and were spaced signifi-
cantly more closely than additions, and furthermore
that this difference was greatest when the two
appeared in the same expression. The mean differ-
ence reported by Landy and Goldstone was very
small, however. Numbers surrounding addition
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signs were separated by an average of 9.65 mm,
multiplications by 9.27 mm—a difference of just
0.38 mm. The typical spacing of asterisks in com-
puter programs is currently unknown, but is unli-
kely to be a major source of arithmetic experience
for typical undergraduates in the psychology pool,
the population examined here. Thus, the contexts
likely to be the most typically experienced by the
arithmetic reasoners studied in these exper-
iments—textbooks and handwritten expressions—
contain only very slight biases to space cross signs
more closely than plus signs.

Since across the range of contexts, multipli-
cations tend to be more closely spaced than
additions, we refer to this variety of spacing as con-
sistent spacing; we refer to spacing as inconsistent
when additions are more narrowly spaced than
multiplications, regardless of the operation sign.

Error types and measures

In the following three experiments, college under-
graduates were asked to evaluate simple
expressions with various physical spacings. The
solutions and solution times were recorded and
analysed. Because the theoretical considerations
predict errors of particular types, we also analysed
the particular kinds of errors that participants
made. We analysed three types of error: operation
errors, operand errors, and precedence errors.

One frequently found error type on single oper-
ation problems (Ashcraft, 1992) is an operation
error, in which the answer given is the correct
answer to a problem that differed from the stimulus
only in its operations. For instance, a response of 18
to the stimulus 3 + 2 × 3 is considered an oper-
ation error, because the answer given would be
correct, if the + operation were substituted by a ×.

If the given response was the correct solution to
any problem with the same operations, in which
one operand was different from that in the
stimulus by no more than two, that response was
classified as an operand error. In the previous
example, 3 + 2 × 3, a response of 12 would be
considered an operand error because it is the
correct response to 3 + 3 × 3.

Errors were classified as precedence errors when
the response was that that would be obtained by
performing the correct operations on the correct
numbers, but in the wrong order. A response of
20 to the stimulus 3 + 2 × 4 would be coded as
a precedence error, because (3 + 2) × 4 ¼ 20.

Most errors could be coded as one of these three
types. Of the remaining errors, most appeared to be
typing errors (e.g., writing 118 or 1118 for a
problem whose correct result was 18). These
uncoded errors were excluded from all analyses.
Some errors (particularly in Experiment 2) were
compatible with multiple error definitions; for
instance, a response of 12 to 3 + 3 × 2 could be
coded as either a precedence error, 12 ¼ (3 + 3)
× 2, or as an operand error, 12 ¼ 3 + 3 × 3.
Analyses were performed both across all errors con-
sistent with a particular type and also using only
those that could be uniquely classified. Results
were very similar for each measure. The more
inclusive measure is reported; the more restrictive
measure yielded similar results, except where noted.

Across all three experiments, median response
times for participants were fairly normally distrib-
uted and could be analysed using analyses of var-
iance. Error rates, however, were quite low; the
distribution of overall accuracy across participants
did not follow a Gaussian distribution. Since
many participants made few or zero errors of par-
ticular types, and in particular conditions, arcsin
transformed error rates did not generally approxi-
mate normal distributions either. Error patterns
were analysed using nonparametric categorical
tests. Counts of each error across each stimulus
type were generated for each participant. The
effect of condition on error was evaluated using a
Wilcoxon signed-rank test. To evaluate the selec-
tive influence of consistency, McNemar’s test was
used. In Experiment 2, which has consistent,
neutral, and inconsistent spacing conditions, a
nominal value was generated for each error type
and participant, based on whether error frequency
was ordered across the three consistency con-
ditions: error (consistent trials) ≤ error (neutral
trials) ≤ error (inconsistent trials). This measure
is appropriate for McNemar’s test because it
generates binary values.
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Spacing and simple arithmetic

Experiment 1 explores the role that contrastive
spatial information plays in the evaluation of
single computations; Experiments 2 and 3 extend
these phenomena to multiterm problems.

Neither the default rule-based model nor the
perspective that computation rules are composed
of learned perceptual biases makes any predictions
in the single-term arithmetic case. The former
model predicts no influence of spacing on perform-
ance at all; the latter predicts such influences only
when there are multiple expressions that can lead
to differences in grouping or computation order.
Nevertheless, there are sound theoretical reasons
to expect differences in computation in this case,
related to both the physical and the internal
representation of numbers and number facts.

As mentioned earlier, although the signs used
here (typewritten + and × signs) are most typi-
cally nearly uniformly spaced, across the range of
notations and contexts, multiplication signs are
more closely spaced than addition signs. If reason-
ers incorporate the typical relative spacing of an
operation (as opposed to the typical spacing of an
operation sign) into their representation of the
sign, then narrowly spaced addition problems
might tend to be confused with multiplication,
and vice versa, leading to increased operation
errors when problems are consistently spaced.

In contrast, metaphor theory (Lakoff & Nuñez,
2000) asserts that numerosity is often processed via
metaphorically related representations of physical
length. On this view, a representation of perceived
physical length might affect arithmetic judge-
ments, such that large spaces would tend to be con-
flated with large numeric magnitudes. Estimates of
numerosity have been shown to be subject to this
sort of size-congruity effect (Choplin & Logan,
2005; Fitousi & Algom, 2006; Henik & Tzelgov,
1982) and to affect spatial judgements (de Hevia,
Girelli, & Giuseppe, 2006).

Along these lines, several researchers (e.g.,
Hubbard, Piazza, Pinel, & Dehaene, 2005) have
suggested that numbers are represented along a
log-compressed mental number line, such that
larger numbers are “farther” from zero than

smaller numbers are; computation is interpreted
as motion along that mental number line.
McCrink, Dehaene, and Dehaene-Lambertz
(2007) report systematic errors in addition and
subtraction computation, consonant with this sug-
gestion, which they attribute to “operational
momentum”. Additions tended to be overesti-
mated, subtractions underestimated. This is pre-
dicted by the mental number line account, if
when transforming a number by moving through
a representation space, people tend to over
adjust—to move too far.

In our case, one might expect reasoners to use
the physical spacing of the operators as an implicit
cue to the distance along the number line that they
should “move” when computing a value. In
Experiment 1 the product of two numbers tends
to be larger than the sum of those same numbers.
This consideration predicts that people would be
more likely to add when operations are narrowly
spaced and to multiply when they are widely
spaced, predicting more rather than fewer oper-
ation errors when problems are consistently
spaced. Similarly, this hypothesis, which we call
the longer is larger hypothesis, predicts that
people would generate a response that is slightly
too large, or slightly too small—for example,
computing 15 for the narrowly spaced 7 + 9.

EXPERIMENT 1

Method

Participants
A total of 48 undergraduates at the University of
Illinois received partial course credit for partici-
pation in this experiment.

Procedure
Some aspects of the procedure are common to all
three experiments presented here. In each exper-
iment, participants were seated in front of a com-
puter and shown simple arithmetic problems one
at a time, in a random order unique for each par-
ticipant. Symbols were presented in the LeHei
Pro font on Apple Macintosh computers. All
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displayed symbols were 14 mm wide. For narrowly
spaced problems, the space between the operands
was 40 mm (including the operation sign). For
widely spaced operations, interoperand spacing
was 100 mm. The viewing distance was approxi-
mately 55 cm.

Problems stayed on the screen until the partici-
pant began typing a response. Responses were
typed; response times were collected from the
first key-press. A 1,500-ms rest period followed,
followed by the next stimulus. Participants were
instructed to perform their calculations quickly,
but the problems were self-paced. Participants
received breaks every 10 min.

In Experiment 1, stimuli consisted of single
addition or multiplication problems. Operands
ranged from 3 to 8; participants solved each
problem in this range twice. Once, the problem
was presented with narrow spacing, as in 3 + 5;
once, it was presented with wide spacing, as in
3 + 5. There were a total of 144 problems.
The experiment took approximately 15 min to
complete.

Results

Mean accuracy was 95.9 + 0.7% across all trials.
Mean correct-trial response time was 1,666 +
72 ms. Using operation sign (plus or times) and
spacing (narrow or wide) as categorical predictors
and problem size (the larger of the two operands)
as an ordinal predictor, a 2 × 2 × 6 analysis of
variance (ANOVA) on median response time
revealed a significant main effect of problem size,
F(5, 235) ¼ 15.5, p , .001, and operation, F(1,
46) ¼ 7.73, p , .01. Operation and problem size
also interacted, such that the response time for
multiplication problems increased more with mag-
nitude than did that for addition problems, F(5,
235) ¼ 4.29, p , .001. There was no detectable
interaction between spacing and operation type,
F(1, 46) ¼ 0.5, nor a main effect of spacing,
F(1, 46) ¼ 0.09.

Error analysis
The theoretical considerations did not predict an
effect of spacing on errors overall, but on patterns

of particular kinds of error. To evaluate these pat-
terns of errors, we coded the incorrect solutions.
Of 282 errors, all but 71 could be uniquely ident-
ified as operation or operand errors. Of the
remaining errors, nearly all appeared to be typo-
graphical errors and were eliminated from analysis.
Overall, the magnitude of errors was larger for
widely spaced problems. Averaging the difference
between response and the correct answer for each
participant in each spacing condition revealed
that responses tended to be larger than the
correct value for widely spaced problems, but
smaller for narrowly spaced problems, W+(40) ¼
212, p , .01. Within the types, operation errors
were numerically more frequent on consistent
than inconsistent stimuli, W+(23) ¼ 224.5, p ,

.05. That is, in accordance with the longer is
larger hypothesis, smaller problems were more fre-
quently summed than were physically larger pro-
blems. Operand errors in addition also matched
the pattern predicted by this hypothesis: Errors
that were within 1 or 2 of the correct result
tended to be smaller when the expression was nar-
rowly spaced than when it was widely spaced,
W+(26) ¼ 175.5, p , .05 (see Table 1). Operand
errors in multiplication were not well predicted
by spacing, W+(27) ¼ 161, p � .49.

Discussion

When operations appeared singly, spatial structure
had a systematic effect on computation.
Consistent spacing caused increased operation
confusions. This is the reverse of what would be

Table 1. Rate of errors by type and spacing in Experiment 1

Error type

Operation spacing

Narrow Wide

Operand overestimates + .003 + .002 .009 + .002

Operand underestimates + .002 + .001 .003 + .001

Operand overestimates × .008 + .002 .011 + .003

Operand underestimates × .015 + .004 .021 + .005

+ ⇒ × .008 + .002 .012 + .003

× ⇒ + .016 + .009 .009 + .005
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expected if algebraic spacing conventions were
biasing interpretations, but is quite in line with
the longer is larger hypothesis: Bigger, wider oper-
ations are more readily interpreted as more power-
ful operations with bigger results.

Similarly, additions were systematically biased
by the size of the space, so that computed sums
were larger when spaces were wide. This is, again,
consistent with the overall notion that longer
suggests larger. This effect appeared only in the
addition operation and not in multiplication. One
possible reason why the effect of size might be selec-
tive is that while additions are frequently assumed to
be computed by manipulations of the mental
number line, multiplications are most often either
retrieved or computed through routine processes
that may not as strongly involve magnitude rep-
resentations (Smith-Chant & LeFevre, 2003).
The processes involved in computing multipli-
cations are relatively insensitive to the magnitude
of the result (Harley, 1990; Whalen, 2000).

Experiment 2 explores the effect of differential
spacing on computations of more complex (two
operation) addition and multiplication problems
presented in the horizontal format. Problems
such as 3 + 4 × 7 contain at least two features
making them more complex than single-operation
problems. At the formal level, reasoners must parse
the expression correctly—that is, as 3 + (4 × 7)
rather than (3 + 4) × 7. This requires the reasoner
to correctly respect the order of operations. At the
physical level, subproblems within a compound
expression may be spaced differently from each
other. While Experiment 1 also contrasted widely
and narrowly spaced problems, this within-
expression variation means that one problem can
be grouped together spatially, meaning that the
other problem is then ungrouped. In Experiment
1, problems to be solved always formed good
visual groups (since they appeared alone). In
Experiments 2 and 3, it sometimes happens that
problems that should be processed early form
poor visual groups.

The visual account presented above (see also
Landy, 2007) predicts two effects of this differen-
tial grouping: First, and in line with previous
results in algebra and novel arithmetic notations,

the effective order of operations rule employed in
parsing is likely to be affected by grouping, such
that closely spaced operations are likely to be
applied first, resulting in increased order errors in
inconsistent spacing conditions. Second, because
reasoners have a promultiplication attentional
bias, problems that tend to attract attention (such
as well-grouped expressions) will tend to be
treated as multiplications. Thus, the visual primi-
tives account predicts that in contrast to the
simple expressions used in Experiment 1, in com-
pound expressions narrowly spaced problems will
tend to be multiplied, and widely spaced problems
added.

Studies measuring performance on single-
operation problems (see Ashcraft, 1992) typically
measure values for the entire range of problems
with operands from around 2 to 9; these small-
value problems are heavily studied in school, and
solutions have often been memorized. In order to
evaluate operation order behaviour, two-operation
problems are, of course, necessary. However, there
are many low-operand two-operation problems;
Experiments 2 and 3 sample this range.
Experiment 2 explores the effects of spacing on
problems with very small operands (2 to 4), while
Experiment 3 measures the impact of spacing on
problems with a mixture of small and large numeri-
cal magnitudes.

EXPERIMENT 2

Method

Participants
A total of 55 undergraduates at Indiana University
received partial course credit for participation in
this experiment.

Procedure
The procedure was very similar to that of
Experiment 1; only the problems evaluated by
participants differed. After a brief warm-up of
uniformly spaced single-operation problems, par-
ticipants solved a set of 216 expressions. Each
expression contained two operations, which could
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be either addition or multiplication. The four
operation structures tested are summarized in
Table 2. Every participant solved every combi-
nation of these operations over the operands 2, 3,
and 4 (except those with three identical operands),
once in each of three spacing conditions. These
conditions differed in their physical layout: in the
narrow-first condition, the left-hand terms were
spaced more closely than those on the right, as in
2 + 3 × 4. In the wide-first condition, the left-
hand terms were spaced more widely, as in 2 + 3
× 4. Finally, in the even condition, both oper-
ations were identically and intermediately spaced.
All symbols were 14 mm wide and were presented
in the LeHei Pro font. For narrow problems, the
space between the operands was 40 mm (including
the operation sign). For neutral, the interoperand
spacing was 50 mm. For widely spaced operations,
interoperand spacing was 100 mm. Notice that
evenly spaced problems occupied a total of
142 mm, but in the uneven conditions, the total
horizontal extent was 182 mm. Participants were
reminded of the order of operations rule and
were shown an example of its application before
beginning the task.

Results

Response time
Figure 1 shows the mean time to first key-press
of correct responses in each analysed problem
condition. Median response times were computed
for each participant and condition and were
analysed with a 4 (operator order: plus–plus,
times–times, plus–times, and times–plus) × 3
(spacing: narrow–wide, neutral, and wide–
narrow) ANOVA using operation structure and
spacing as categorical independent factors. In this

coding, spatial-operation consistency appears as an
interaction. This interaction was significant, F(6,
324) ¼ 10, MSE ¼ 1.1, p , .0001. As can be
seen in Figure 1, the interaction was due to problems
in which the order of precedence differed: plus–
times and times–plus problems. These were solved
more quickly when the spacing was consistent with
the order of operations. For problems in the
times–plus order, wide-first problems took longer
than other types; for problems in the plus–times
order wide-first problems were fastest. There was
also a significant main effect of problem type, F(3,
162) ¼ 68, MSE ¼ 21.4, p , .0001, such that,
generally, times–times problems took substantially
longer to solve than other problems.

To verify that the results in median response
time did not result from different accuracy patterns
across problems in the various conditions, an item
analysis was performed on all plus–times and
times–plus problems. An “item” was defined as a

Table 2. The operation structure presented in Experiment 2

Operation type Example

Plus–plus 3 + 2 + 4

Plus–times 3 + 2 × 4

Times–plus 3 × 2 + 4

Times–times 3 × 2 × 4

Figure 1. Mean median correct-trial response time for the four

problem types in each spacing condition. Narrow–wide means

that the left operator is surrounded by narrow spacing, while the

right operator is surrounded by wide spacing. Error bars in all

cases represent one within-condition standard error.
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particular formal problem, regardless of spacing.
Thus, spacing constituted a within-items condition,
and operation type a between-items condition. The
ANOVA revealed a significant interaction between
spacing and operation structure, F(2, 70) ¼ 33.6,
MSE ¼ 27.7, p , .0001. Thus, across the range
of items, problems were solved more quickly when
they were consistently spaced.

Errors
All problems, including plus–plus and times–
times trials, were included in the error analysis.
In total, 1,180 incorrect responses were recorded.
Of these errors, 908 fitted at least one of the
three error types: operand errors, operation
errors, or precedence errors. The remaining 272
unclassified errors appeared to be primarily typing
errors (e.g., writing 118 for a problem whose
correct result was 18). A total of 359 errors could
not be uniquely categorized (i.e., the same response
could result from multiple errors), leaving 549
uniquely classifiable errors.

Operation errors were explored by counting
errors made by each participant on consistently,
neutrally, and inconsistently spaced simple
expressions. For times–times and plus–plus pro-
blems with uneven spacing, one problem is “con-
sistent” while the other is “inconsistent”. That is,
for a problem such as 3 + 3 + 4, a response of 15
(3 + 3 × 4) would constitute an operation error
on a consistent expression, while a response of 13
(3 × 3 + 4) would constitute an operation error
on an inconsistently spaced expression.
Participants made more errors on inconsistently
spaced stimuli than on either neutrally, W+(42) ¼
856, p , .001, or consistently spaced stimuli,
W+(43) ¼ 899, p , .001. Consistent and neutral
error rates did not differ, W+(37) ¼ 391, p � .55.
This pattern held even when just problems with
identical operations were considered. On times–
times and plus–plus problems, more errors were
made when spacing was inconsistent than when it
was neutral, W+(31) ¼ 484.5, p , .001, or consist-
ent, W+(31) ¼ 455.5, p , .001. The latter two
error rates did not differ, W+(16) ¼ 37, p , .1154.

Precedence errors also generally increased as
spacing grew more inconsistent. A total of 18

participants made more precedence errors on
consistent than inconsistent problems, while only
1 participant did the reverse (the remaining partici-
pants made identical numbers of errors in both
spacing types). The three problem types were
well separated: Participants made more errors on
inconsistent than on neutral expressions, W+(19)
¼ 152, p , .05, and more errors on neutral than
consistent expressions, W+(26) ¼ 289.5, p , .01.
The difference between inconsistent and consistent
errors was also significant, W+(27) ¼ 327, p ,

.001. Although participants made more errors
overall on inconsistent than consistent expressions
(see Figure 2), the relationship between precedence
and consistency was particularly strong. Precedence
errors were ordered by consistency for 42 of the 55
participants, but nonprecedence errors were
ordered for only 23 participants. Precedence
errors related more strongly to spatial consistency
than nonprecedence errors by a McNemar’s test,
x2(1) ¼ 11.17, p , .001.

Participants made more errors overall on plus–
times than on times–plus stimuli, W+(46) ¼ 933,

Figure 2. Error proportion for operand, order, and operator errors

across several consistency levels. Error bars reflect standard errors.
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p , .001, suggesting a tendency to evaluate
expressions from left to right, consistent with
reading order. Also, operation errors were more
common with operations in a right-biased order
(additions on the left and multiplications on the
right), than those in a left-biased order, W+(46)
¼ 789.5, p , .001.

When all errors were included, participants
were significantly biased toward the overestima-
tion of widely spaced and the underestimation of
narrowly spaced operations, W+(45) ¼ 806, p ,

.01. Inspection of the error patterns indicated
that operand errors could frequently also have
resulted from order reversals; an influence of
spacing on computation order could have
accounted for the bias on result magnitude,
Indeed, when only operations that could be
uniquely coded were included, this bias was not
significant, W+(30) ¼ 214.5.

Discussion

The alignment of space and precedence demon-
strated previously in algebra (Landy &
Goldstone, 2007b) and arithmetic using an
invented notation system (Kirshner, 1989) was
replicated here using standard arithmetic notation.
When operation precedence and spatial proximity
conflicted, arithmetic computations were substan-
tially more difficult than when they were congru-
ent. Error analysis indicated that precedence was
particularly sensitive to consistency, as had been
previously reported.

Operands were also more likely to be summed
when widely spaced and to be multiplied when
narrowly spaced, supporting the theory that rea-
soners encode information about operation
spacing and use it to select operations. These are
striking errors because they reflect misperceptions
of clearly presented expressions. This is predicted
by the visual primitives account, because easily
grouped, early performed computations tend to
be multiplications. A similar account can be
motivated from general statistical sensitivity to
conventional notations, assuming that reasoners
generalize spacing regularities by operation across
symbol (that is, from the typical multiplication

symbols of algebra). However, this account does
not easily accommodate the pattern in the single-
operation case examined in Experiment 1. In the
visual account, errors depend on comparative
grouping, a property that does not exist in
single-operation expressions, rather than on the
statistical presence of differential spacing. Since
the error pattern found here is the opposite of
that found in Experiment 1, which had similar
notational considerations but different grouping
properties, we conclude that the increase in oper-
ation errors found for widely spaced multipli-
cations and narrowly spaced additions found here
was not caused by the relative spacing per se, but
rather results from the perceptual grouping—
which in this case was induced by spacing.

Finally, error measures show a general bias
favouring the times–plus format: Participants are
more accurate on these expressions than on plus–
times expressions and are more likely to treat an
operation as a multiplication if it appears on the left.

Experiment 3 serves primarily as a replication of
Experiment 2 with operands that come from a
larger range. The same hypotheses are tested, in
largely the same format. The problem set pre-
sented to participants is different, however, per-
mitting an evaluation of the particular materials
employed in Experiment 2 and verifying that the
results are not particular to that problem set.
Since the effect of spacing on operation errors
reversed direction between Experiments 1 and 2,
it seemed prudent to verify that the latter effect
was robust to other small changes in format.
Furthermore, the use of larger numbers (up to 9)
provides a better window onto error patterns,
because particular responses are less likely to be
compatible with multiple errors. Furthermore,
each participant solved a particular subproblem
(e.g., 4 × 2) fewer times in Experiment 3 than in
Experiment 2. Finally, while in Experiment 2,
half of all problems could be solved by performing
either the left or the right computation first, in
Experiment 3, all problems contained one addition
and one multiplication; thus the order was entirely
specified by the rules of precedence. On the
other hand, this implies increased redundancy:
Participants could use the identity of the left-hand
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operation to constrain the right-hand operation. In
Experiment 2, the operations were independent.
Despite these procedural differences, the general
account of computation ordering as rooted in
processes of attention and grouping predicts
similar results in Experiments 2 and 3.

EXPERIMENT 3

Method

Participants
A total of 38 Indiana University undergraduates
received partial course credit for participation in
this experiment.

Procedure
The experiment design and procedure were identi-
cal to those of Experiment 2. Stimuli were similar
to those in Experiment 2, but only the times–plus
and plus–times operation structures were included,
and evenly spaced stimuli were dropped. The oper-
ands systematically varied in magnitude. The
middle operand was always 3 or 4. Each outer
operand could be independently small (2 or 3) or
large (6, 8, or 9), providing compound expressions
with a range of sizes and difficulties. All problems
satisfying these criteria were presented, once in
each of the consistent and inconsistent spacing
conditions. In all, each participant saw 200
expressions in a unique random order. The exper-
iment took about 45 minutes to complete.

Results

Response time
The larger of the two outside operands was used as a
measure of problem size. A 2 (operation order:
times–plus or plus–times) × 2 (spacing: narrow–
wide versus wide–narrow) × 5 (problem size)
ANOVA of participants’ median correct-trial
response times was performed. The analysis revealed
a main effect of operation order, F(1, 37) ¼ 12.0,
MSE ¼ 2.1, p ¼ .001; see Figure 3), such that pro-
blems that had to be computed from right to left
(that is, plus–times problems), and of problem

size, F(4, 148) ¼ 69.6, MSE ¼ 56, p , .001, such
that problems with larger operands took longer
to solve. Consistency—the interaction between
spacing and operation structure—also impacted
response time, F(1, 37) ¼ 27.5, MSE ¼ 7.1, p ,

.001. No other effects approached significance. In
particular, the three-way interaction between
spacing, structure, and problem size was not signifi-
cant, F(4, 148) ¼ 0.53, p � .72.

To verify that the results in response time were
not due entirely to a distribution of errors across
problems of different sizes, an items analysis iden-
tical to the ANOVA reported in the previous

Figure 3. Mean response time and error rate across operand size and

consistency.
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paragraph was performed, grouping all stimulus
items that represented a particular formal
problem, regardless of order and spacing. The
analysis confirmed a significant interaction
between operation order and spacing, F(1, 49) ¼
14, MSE ¼ 147, p , .001.

Error analysis
Once again, errors were classified as operation
errors, operand errors, and precedence errors.
These errors made up 1,001 (70%) of all 1,421
recorded errors. Most of the remaining errors
appeared to be “double errors”, in which two
errors were made on the same problem; most of
the rest appeared to be typos. It should be noted
that the ability to uniquely identify error types
increases with the magnitude of the operands. For
instance, 10 was a common response for the smal-
lest problem tested, 2 + 3 × 2. This could result
from a precedence error, because (2 + 3) × 2 ¼ 5
× 2 ¼ 10, but it could also result from an operand
error, because 2 + 4 × 2 ¼ 2 + 8 ¼ 10.

As in Experiment 2, both precedence and
operation errors were more common on inconsist-
ently than consistently spaced stimuli—precedence
errors, W+(19) ¼ 164.5, p , .01; operation errors,
W+(35) ¼ 566.5, p , .001—and, once again,
operand errors were not, W+(29) ¼ 193.5 (see
Table 3). According to a McNemar’s test, the
relationship between precedence errors and consist-
ency was greater than that between consistency and
all nonprecedence errors, x2(1) ¼ 6.7, p , .05.

Participants made significantly more operation
errors on trials with additions on the left and mul-
tiplications on the right than the reverse, W+(35)
¼ 440, p , .05 (see Table 4).

Finally, the longer is larger hypothesis was not
supported in this experiment. Participants did

not systematically understate the value of narrowly
spaced problems, nor overstate the value of widely
spaced problems, W+(34) ¼ 299.5.

Discussion

Experiment 3 successfully replicated the primary
findings of Experiment 2. Experiment 3 employed
a different set of stimuli, larger operands, and a
different collection of spacing and operation struc-
tures than Experiment 2, but in both cases
alignment of proximity and operation order
increased overall accuracy, decreased accurate-trial
response times, and decreased specifically pre-
cedence and operation errors. Experiment 3 verifies
that the differences in operation errors between
Experiments 1 and 2 did not result from the particu-
lar selection of problems involved in Experiment 2.

In general, errors increased with the magnitude
of the operands, particularly errors associated with
retrieving values for memorized operations (oper-
ation and operand errors). Precedence errors were
mediated by spacing, but were relatively insensitive
to operand size in this study. This suggests that
order of operation evaluation is executed largely
independently of the calculation itself.

GENERAL DISCUSSION

Spacing plays a substantial and varied role in deter-
mining how undergraduate students solve simple
arithmetic expressions. Across three studies, par-
ticipants were sensitive to the relative spacing of
subproblems within an expression. Spatial infor-
mation affected computation in two substantially

Table 3. Rate of operand errors in each position in Experiment 3

Error type

Operation spacing

Narrow Medium Wide

Overestimate .031 + .005 .028 + .004 .043 + .006

Underestimate .028 + .004 .02 + .003 .021 + .003

Table 4. Relationship between errors of various types and spatial

consistency in Experiment 3

Error measure

Stimulus type

Consistent Inconsistent

Overall .139 + .024 .239 + .047

Precedence .030 + .016 .108 + .037

Operator .014 + .004 .042 + .006

Operand .034 + .003 .039 + .003
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distinct ways: at the level of individual compu-
tations, and at the level of expression structure.
At the level of expression structure, people prefer-
entially grouped terms when they were placed close
together. In other words, participants were more
likely to execute a calculation relatively early, and
to multiply, when the participating symbols were
relatively closely spaced. At the level of individual
computations (Experiment 1), spacing systemati-
cally affected the direction of calculated results,
so that wide spaces caused the calculated response
to be larger than the correct result.

Spacing affects participants’ executed formal
structure in computation: Participants tended to
calculate operations early if they were closely
spaced. This by itself replicates in standard arith-
metic results found by Landy and Goldstone
(2007b) on an algebraic validity task, and
Kirshner (1989) on an alternative-notation arith-
metic task. The current results go beyond previous
research in two ways: First, prior work demon-
strated effects of grouping in systems (algebra,
or invented notation systems), which reliably
incorporate spacing information. In arithmetic, in
contrast, spacing information is often neutral or
misleading. Although people tend to space more
tightly grouped operations very slightly more
closely (Landy & Goldstone, 2007a), typeset
sources such as elementary school textbooks and
LaTeX-formatted documents typically do not dif-
ferentially space the plus and cross signs.
Nevertheless, the current results demonstrate that
people incorporate spacing into operation ordering
even when it is only occasionally present and gen-
erally unreliable. Secondly, while both Kirshner
(1989) and Landy and Goldstone (2007b)
showed that spacing influences precedence errors,
the current work demonstrates additional specific
behaviours that are impacted by spacing.
Participants are guided by the spacing not only in
the order in which they apply operators, but also
in the identification of individual operations:
Spacing is used as a cue to operation type. The
influence of this cue depends on the global struc-
ture of the embedding problems, or problem set.
If spacing causes differential grouping in the
larger expression (Experiments 2 and 3), then

close spacing implies multiplication; when it does
not (Experiment 1), widely spaced (and conse-
quently longer) operations suggest multiplication.
Neither of these error effects is readily predicted
by traditional models of either single or compound
arithmetic computation, nor has either been to our
knowledge previously reported.

This is the first demonstration that we know of
that perceived expression structure impacts subpro-
blem computation. Models of single-problem
arithmetic (Campbell, 1994; Dehaene & Cohen,
1995; McCloskey & Lindemann, 1992), as well
as models of multiterm computation (Anderson,
2005; Koedinger & MacLaren, 1997), generally
assume that single-problem computation is inde-
pendent of abstract problem structure. In the situ-
ation demonstrated here, the actual computation
process itself seems to be altered by the structure
of the expression in which it is embedded.

It might well be possible to accommodate
spacing-structure alignment biases within a generic
production-system account of mathematical reason-
ing. After all, these regularities do exist to some
degree in handwritten expressions (and in printed
expressions for some multiplication signs), and it
might be supposed that a system learning the order
of operations would be sensitive to such statistical
regularities. Therefore, a learning system could
potentially incorporate this information, but could
not, in general, profit from it, because the cues
guiding structure are already unambiguous in the
symbols themselves. Thus, there is no good reason
why systems with these regularities would be in
any way superior to those that lack them.
Furthermore, such a generic system provides no
reason to predict these results beforehand.

An alternative account that comports more
naturally with the results presented here and pro-
vides a motivation for systems that align visual
and formal properties is that the production
system learning the parsing of notations is not
generic, but is itself partially implemented by a
highly biased visual system. That is, we speculate
that real rule learning is often (and here) accom-
plished largely by modally specific systems with
idiosyncratic learning biases (Endress et al., 2005;
Goldstone & Barsalou, 1998; Pothos, Chater, &
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Ziori, 2006). In this case, the bias in arithmetic
derives from a general visual bias to group together
proximal elements into compound “objects”. This,
in turn, suggests that visual processes come to
govern, in typical cases of computation, ordering
operations.

Indeed, Rusconi et al. (2004) found that the
automatic computation of multiplication facts
was strongly dependent on spatial arrangement:
Activation was highly automatic for multipli-
cations when arranged horizontally, but entirely
absent when the operands were vertically arranged.
Similarly, it may be that increased distance, and
being located in different groups, inhibits the
automatic calculation of arithmetic facts. Typical
spacing practices in algebra (in which multipli-
cations are placed close together) may help
ensure that automatic activations generally occur
in the correct temporal order.

The observed tendency to add widely spaced
and multiply narrowly spaced problems, only
when those problems appear in compound
expressions, suggests that the calculated order of
operations biases people’s perceptions of the oper-
ators themselves. In particular, when physical
spacing biases people to perform an addition oper-
ation before a multiplication operation, they end up
being more likely to perceive the addition oper-
ation as a multiplication operation. This bias is
somewhat reminiscent of the perceptual fluency
heuristic (Jacoby & Dallas, 1981; Whittlesea &
Leboe, 2003). This heuristic is grounded in the
robust effect that people have an easier time per-
ceptually identifying objects that have been pre-
sented to them earlier or are somehow more
familiar. Perceptual fluency reverses the causal
direction of this effect and is thus a bias to judge
items as more familiar when they are easier to
identify perceptually . When items are presented
in a physical manner that makes them harder to
see, by rendering them in a blurry or noisy
fashion, people judge that they have not been pre-
viously exposed to the item. The current result is
analogous. In both cases, when perceptual proces-
sing of an item is manipulated, people are sensitive
to the resulting psychological consequences
on their performance and end up incorrectly

attributing the basis for their performance conse-
quences. These phenomena are predicted when
people have simultaneous failures and successes in
their metacognition. On the positive side, the rea-
soner is using their observed order of executed
operations to infer what the operators in fact
were, and they are apparently doing this in an auto-
matic fashion. On the negative side, they are
unaware that their own execution order has been
influenced by a formally irrelevant factor—physical
spacing. It is reasonable that people do not make
the correct inference to physical spacing because
(like variations in stimulus blurriness for Jacoby
& Dallas, 1981), these moment-to-moment
variations are not a typical feature of their
environment.

Finally, Experiment 1 showed an impact on indi-
vidual computation that is not obviously related to
structure: Errors on widely spaced problems were
more likely than those on narrowly spaced problems
to be larger than the correct response, both by
biasing the numerical computation and by causing
participants to systematically misperceive operators.
This result serves as experimental confirmation of
the role of physical size in literal computation.
The numeric size of a calculation is apparently con-
flated with or inherently connected to physical size
such that when physical size is large, numerical
result is overestimated as well. This account is well
predicted by modern accounts of mental number
representation (e.g., Hubbard et al., 2005) and by
metaphorical accounts of mathematical reasoning
(Lakoff & Nuñez, 2000).

Because spatial consistency affects those aspects
of expressions most directly involved in symbolic lit-
eracy, the interaction between space and formal
reasoning has potential methodological impli-
cations for practices in the psychology of mathemat-
ical reasoning and learning. Koedinger and Nathan
(2004), for example, found that, contrary to the
expectations of most educators and researchers,
some story and word problems are easier for high-
school students to solve than are formally equivalent
symbolically expressed computations. Although it
does not affect their main conclusion that learning
to read symbolic notation is a difficult and lengthy
process, it is nonetheless telling that their symbolic
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expressions—which require participants to under-
stand and apply order of operations rules—all
seem to be uniformly spaced, making symbolic
interpretation more difficult than it would be in at
least some common notations. In general, studies
of this sort do not report spacing conventions; the
physical spacing must be inferred from the sample
figures, which in this case use a uniformly spaced
font. The current research highlights the impor-
tance in educational studies in mathematics of
reporting the exact physical properties of exper-
imental stimuli. Furthermore, experiments using
symbolic stimuli that do not match the spacing pro-
ductions that students themselves employ when they
produce mathematical expressions may not reflect
real student understanding.

Attending to the role of physical layout in
formal reasoning could potentially lead to the
development of formalisms that offer pedagogical
improvements over neutral formats. Reasoners
use space when interpreting arithmetic and alge-
braic expressions. One might take either of two
pedagogical lessons from such a reliance: First,
one might take the use of spacing as a weakness
of extant formal symbol-systems (and how they
are taught) and attempt to design systems that do
not provide such false lures; this is the approach
taken by Kirshner and Awtry (2004). We are
inclined toward the alternative approach of
viewing spatial structure as a virtue, not a fault,
of notational systems. If environmental spatial
properties are systematically constrained to bias
reasoners toward correct answers, then spatial
properties facilitate interpreting and evaluating
expressions, benefiting the reasoning processes
that often depend on these foundational skills by
freeing resources potentially involved in both.
However, whether this potential advantage is or
can be realized in actual mathematical reasoning
using standard notation is currently unclear.
Substantial research into how reasoners do or can
incorporate mathematical spacing practices into
reasoning will be needed to reach clear or definite
implications for educational practice.

Fundamentally these results challenge the con-
ception of human reasoning as a fundamentally
abstract formal process, with errors driven by

misunderstandings of formal rules and properties.
Instead, visual processes with idiosyncratic biases
systematically impact even such an in-principle
abstract task as arithmetic. The engagement of
visual features and processes indicates that formal
reasoning shares mechanisms with the diagram-
matic and pictorial reasoning processes with
which it is often contrasted. The very word
“formal” contains an implicit pun—“form” may
refer either to the abstract structure of a thing or
to its outward shape or appearance. We think
that this pun is also implicit in the way reasoners
achieve the use of formal systems like arithmetic;
we frequently use the outward forms of nota-
tions—and the ways that we engage them—as
proxies for inherent computational essence.
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