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Abstract 

This paper investigates how people build interpretations of 
compound mathematical expressions in a novel formal 
system. In traditional arithmetic, interpretations are guided by 
an order of precedence convention (times and division 
precede addition and subtraction). This order is supported by 
a spatial convention that supports the order of precedence. In 
the experiment described here, participants learned 
computation tables of two simple novel operators, and then 
were asked to discover a precedence rule. The operators were 
presented with a physical spacing convention that either 
aligned with the precedence order, opposed it, or randomly 
opposed or aligned with the precedence order. Participants 
were more likely to reach a criterion of successful 
performance when the order of operations aligned with the 
precedence order, and did so more quickly than either other 
group. The results indicate that reasoners integrate salient 
perceptual cues with formal knowledge following familiar 
conventions, even on novel systems.  

Keywords: Mathematical cognition, embodied cognition, 
formal reasoning, symbolic processing 

Introduction 
The ability to understand abstract formal structures is one of 
humanity’s most distinctive and powerful cognitive traits. 
Arithmetical and algebraic notations, formal logic, and 
natural language syntax all contain underlying structure that 
at some level is entirely arbitrary and abstract. However, 
every actual notation has some particular physical 
presentation, and that notation always contains formally 
irrelevant physical relations. Often, especially when formal 
understanding is poor or partial, these relations may be more 
salient to a reasoner than the formally sanctioned abstract 
relations. The goal of this work is to explore whether and 
how people use irrelevant but salient visual information in 
exploring a novel formal system.  

This issue has special importance for understanding 
mathematical reasoning and learning. Although arithmetic 
notation may be the best-known example of a purely formal 
symbol system, arithmetic itself contains a variety of non-
formal conventions that relate visual aspects of expressions 
to their formal structure. One of the most striking of these is 
a correlation between physical proximity and the order of 
precedence in three common operators: addition, 
multiplication, and exponentiation. In the typeset expression  
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a + b " c
2,  

 

for instance, the c is closer to the exponent than to the b, and 
b is closer to the c than to the a. This physical relationship 
maps directly onto the corresponding order of precedence: c 
should first be squared, then the result multiplied by b, and 
a should be added to the result. The correspondence is far 
from perfect, especially when expressions are hand-written 
(Landy & Goldstone, in press A), but nevertheless, there is a 
general relationship between physical and syntactic 
proximity in mathematics, exacerbated by the frequent 
omission of the multiplication sign in algebra (of four 
prominent algebra textbooks (McGraw-Hill 1998; Cord 
Communications 2004; Holt, Rinehart and Winston, 2004; 
McDougal Littell, 2004), each used at least one times sign 
convention which was more closely spaced than plus signs, 
besides omission.  None ever did the reverse).  

People can learn and understand formal rule systems that 
lack the kind of perceptual-syntactic regularities algebra 
contains. The question addressed here is whether and in 
what ways salient perceptual regularities, when present, are 
used by people learning novel formal structures.  
 
Background Kirshner (1989) explored the correspondence 
between spatial proximity and arithmetic syntax by creating 
a novel but natural set of symbols for the basic operations: 
M for multiplication, A for addition, E for exponentiation, 
and so on. Problems expressed in this language were 
presented with the natural spacing relationships to one 
group of high-school students, uniformly spaced to another. 
The participants who solved problems presented in the 
spaced language made many fewer errors compared to 
participants solving unspaced problems.  

Kirshner’s study demonstrates that arithmetic learners 
represent spacing regularities inherent in standard symbolic 
notation, and that they rely on the presence of those cues 
when developing interpretations of symbolic mathematical 
expressions. This is compatible with other studies that have 
shown that rule-based behavior uses irrelevant features of 
exemplars (McNeil & Alibali, 2004). One limitation of this 
work, however, is its use of standard arithmetic operations 
in the novel language. Because the stimuli are standard 
mathematical operations, it is difficult to determine the 
generality of the visual processes that govern order of 
operations behaviors. Participants have extensive experience 
with spacing in standard arithmetic symbology; this 
experience may drive their behavior when learning novel 
symbols for familiar operations without implying any 
general connection between syntax and spacing.  



Studies of rule-based categorization have indicated that 
familiarity of contextual features can influence judgments, 
even when those features are known to be irrelevant (Allen 
& Brooks, 1991; Palmeri, 1997).  Since Kirshner’s stimuli 
map to the familiar operations, it is impossible to separate 
the effects of spacing familiarity from the role that spacing 
may play in guiding abstract interpretation generally. The 
current experiment expands on previous research by 
exploring the behavior of learners trying to understand a 
novel (generally mathematical) formal structure.  Because 
the system is novel, familiarity and structural alignment 
effects can be cleanly separated. 

In the domain of artificial grammar learning, Pothos 
(2005) explored the role of irrelevant variation on learning 
by manipulating the case of letters in stimulus sentences.  
Despite instructions to ignore the case of the letters, 
accuracy was lower when case was manipulated than in a 
single-case control.  This study demonstrates that irrelevant 
variation can impact rule learning, but that variation makes 
the task uniformly more complex.  In the study reported 
here, on the other hand (as in the case of algebraic 
equations), irrelevant variation is expected to simplify the 
task, by providing addition cues to structure. 

Several interesting questions that can be asked about such 
a study include the following: Is the relationship between 
spacing and syntax applicable only to operations in which it 
has been learned, or will such a convention transfer to novel 
systems? If the latter, are these broader practices contingent 
and historical, or are they driven by underlying cognitive 
pressures? Will any kind of salient perceptual cue help? 
Finally, assuming that visual cues can improve performance, 
will those perceptual cues act as crutches, limiting or 
harming performance when spatial alignments are absent? 
Answers to these questions would inform cognitive theories 
of symbol learning, as well as having implications for 
mathematics education research and mathematical 
cognition. The experiment presented here provides an 
exploration of these issues, by asking participants to learn a 
novel pair of mathematical operations, and discover an order 
of operations rule governing them. 

This novel system is presented to participants in one of 
three conditions: aligned, inverted, and random. The aligned 
condition is like the standard mathematical operators in that 
high-precedence operations are closely spaced. The inverted 
condition also provides a visual cue to precedence, but in 
this case the higher order operators are placed further apart. 
In the random condition, operators are randomly spaced 
narrowly or widely on each trial. In this last case, spacing 
variations—though present—are entirely uninformative. 

There are two likely ways that reasoners might integrate 
spatial information in making perceptual judgments. If the 
primary advantage of spatial-syntactic regularities is the 
salient visual cue to structure, then randomly spaced 
structures should be harder than either aligned or inverted; 
since the former provides no visual information, while both 
aligned and inverted trials present salient 100%-valid cues 
to structure. Alternately, if the broader arithmetic practice of 

aligning short distances in additions, multiplications, and 
exponents with their order of precedence is a generalizable 
convention, then aligned trials should be quite easy, 
compared to both inverted and random trials.  

The final stage of the experiment tests the robustness of 
the knowledge acquired, by removing spacing regularities. 
This phase is intended to evaluate whether spatial 
information that leads to correct judgments impedes 
subsequent understanding, as has been proposed, e.g., by 
Kirshner & Awtry (2004). Goldstone & Son (2005) argue 
that concrete trials presented in early training can support 
learning abstract concepts. The unsupported test phase 
presents one version of “concreteness fading”; valid visual 
cues to structure are removed. If these visual cues are used 
as crutches to replace syntactic knowledge, then 
performance should be roughly equal across all conditions, 
or even worse on conditions that show a benefit in the 
double-operator phase. If on the other hand these visual cues 
help guide syntactic understanding, then having experience 
with beneficial visual cues should lead to overall greater 
success even when support is removed.  

Experiment 

Method 
68 Indiana University undergraduate students participated in 
this study for partial course credit. Of these, 5 were 
eliminated because they failed to reach criterion in the initial 
single-operator training stage, leaving 63 participants whose 
data were analyzed. 

Participants learned two novel operations in isolation, and 
then had to discover a rule for how to combine them. The 
participants were instructed that the rule would be a simple 
order of precedence between the operators—one operator 
was to be bound before the other. 
 
Single-operator training The experiment began with a 
single-operator training stage. In this phase, two novel 

operations, designated by the signs ࿋and ۵, were defined 
over the symbols 0, 1, and 2 (see Tables 1 and 2). These 
operators were intended to look and feel mathematical, 
without reminding participants of any particular known 
operation, and to be balanced across response categories, 
and to be largely non-associative. The full operator tables 
for both operations were presented to participants before 
beginning the experiment, and after each section. 

 

Table 1: The definition of the ࿋ operator. 

࿋ 0 1 2 

0 2 2 1 
1 2 1 0 
2 1 0 0 

 



Table 2: The definition of the ۵ operator. 

۵ 0 1 2 

0 0 1 2 
1 1 1 0 
2 2 0 2 

 
 
Single-operator training consisted of three sections: each 

section consisted of forced-choice trials, in which a single 
entry of a operator table was presented on a computer screen 

(for example, “1 ࿋ 1”). The stimulus remained until the 
participant responded by pressing a key corresponding to 0, 
1, or 2. In section one, all trials involved one of the two 
operators; in section two, only the other operator appeared. 
The third section of single-operator learning contained trials 
with each of the two operators (though never both together 
in a single trial). Each section continued until a criterion of 
ten consecutive correct trials was reached, or until 300 trials 
were presented without reaching criterion. Participants 
failing to reach criterion in single-operator training have 
been removed from analysis. At least 30 trials were always 
presented in each section before the participant was allowed 
to proceed, in order to guarantee that participants had some 
time to familiarize themselves with the operations.  

 
Double-operator stage The second part of the experiment 
presented compound problems in which both operations 
appeared in each expression. For instance, a participant 

might see the stimulus “1  ۵  2࿋1.” The participants were 
instructed both at the beginning of the experiment, and 
immediately before double-operator trials began, that they 
would have to infer the rule for combining operators, but 
that one operator would be higher precedence than the other. 

In the example given, if ࿋ precedes ۵, then 1 ۵ 2 ࿋ 1 

reduces to 1  ۵  0, which reduces to 1, so the answer is 1. 

If, on the other hand, ۵ precedes ࿋, then 1 ۵ 2 ࿋ 1 reduces 

to 0 ࿋ 1, which reduces to 2.  
Participants were presented with random problems, and 

made forced-choice responses, as in single-operator 
training. Which operation had higher precedence was 
counterbalanced across conditions. Once again, participants 
were tested until they reached a criterion of 10 in a row 
correct, or until they attempted 300 trials. These operators 
are non-associative, but imperfectly. This makes the task 
much more difficult, because participants received partial 
reinforcements for incorrect rules. It also makes the trials-
to-criterion measure slightly less precise than might be 
hoped, since a participant might answer 10 problems in a 
row correctly despite using the reverse of the correct rule.  

Throughout both single- and double-operator trials, 
operators were differentially spaced. Participants in the 

aligned condition always saw the higher-order operator 
spaced more narrowly than the secondary operator. For 

instance, if ࿋ precedes ۵, then a participant in the aligned 

condition would see problems like “1࿋2” and “0  ۵  0” in 

the single-operator training, and “1࿋0  ۵  0” in the double-
operator phase. In the inverted condition, these regularities 
were reversed: the higher-order operator was always more 
widely spaced. In the random condition, spacing was 
randomized for each trial, with the constraint that on 
double-operator trials the operators were never presented 
with identical (both wide or both narrow) spacing.    
 
Unsupported stage In the final stage of the experiment, 
participants solved problems which were formally identical 
to those of the double-operator phase, but spatial 
consistency was removed. In this phase, every trial was 
spaced randomly with the higher order operator either 
widely spaced, narrowly spaced, or with both operators 
spaced identically. Again, participants were tested until they 
reached a criterion of ten adjacent correct trials. 
 

Results 
Reaching criterion on this task proved extremely difficult. 
Of the 63 participants who successfully learned the 
meanings of single operators, only 34 (53%) mastered both 
the double-operator and unsupported stages. Participants in 
the different conditions fared differently (see Table 3): 
specifically, a higher proportion of participants reached 
criterion in the aligned than the inverted trials (72% vs. 
34%, 
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" 2=4.58, p<0.05). Success reaching criterion in 
random trials did not differ from either aligned or inverted 
conditions.  

 
Table 3: Number of participants reaching criterion on the 

double-op and unsupported experimental sections 
 Condition 
Performance Aligned  Inverted Random 
Reached Criterion 16 8 10 
Did not Reach Criterion 8 17 8 
% Successful 72% 34% 56% 
 

Double-operator stage 
Participants in the three conditions who reached criterion on 
all trials also differed in how many trials it took to reach that 
criterion. The mean number of trials taken to reach the end 
of each stage for each condition are presented in Table 4. 
While the single-operator training stage took participants in 
each condition roughly similar numbers of trials, the 
double-operator stage was mastered substantially faster by 
participants in the aligned condition than in either the 



random (t(24)=2.98, p<0.01) or the inverted conditions 
(t(22)=2.38, p<0.05).  

Evidence for an alignment bias can also be seen in the 
behavior of participants in the random condition on 
individual trials. Since half of all trials in this condition 
have their spacing aligned with syntax, and half are 
inverted, differences in the accuracy on these trials provides 
an alternate measure of the alignment assumption. Table 5 
presents the mean accuracy for the random condition, 
divided into trials in which the higher-order operator 
appeared on the left and on the right. As is indicated Table 
5, and was verified by a 2-way ANOVA analysis, 
participants solved substantially more aligned than inverted 
trials, (81% vs. 61%, F(1,9)=7.3, p<0.02). The effect of 
operator position had a marginally significant effect on 
performance (74% vs. 69.6% accuracy, F(1,9)=5.2, p~.056).  

Unsupported stage 
The removal of spatial regularities hurt most those who 
gained the most from them. Participants in the aligned 
condition took substantially longer than in the inverted or 
random conditions to reach criterion in the unsupported 
stage (aligned vs. inverted t(22)=2.63, p<0.05; aligned vs. 
random t(20)= 2.62, p<0.05). The inconsistent and random 
conditions did not differ significantly. 

 
 

Table 4: Mean number of trials to criterion (trials), with 
standard errors 

 Condition 
Experimental Stage Aligned  Inverted Random 
Single-op Training  139±17  131±13 136±24 
Double-op stage   26±4   52±10  62±11 
Unsupported stage   50±10   21±4  22±4 

Table 5: Mean accuracy in the random condition on the 
double-operator stage, divided by position and spacing of 

high-order operator. 
 Spacing 
Position Aligned Inverted 
Left 84.3±4.4 64.4±7.6 
Right 78.8±5.8 57.1±7.0 

Since all three conditions contained trials that were 
aligned, inverted, and evenly spaced in the unsupported 
stage, an analysis of accurate trials by type is possible in all 
three conditions. The results are displayed in Figure 1. We 
performed a 3-way ANOVA using accuracy as the 
dependent measure, condition as a between-participants 
factor, and spacing alignment and the ordinal position of the 
higher-order operator as within-participants factors. This 
analysis revealed that mean accuracy was lower in the 
inverted condition than in the other two (73% vs. 84 and 
86%, F(2, 31) =5.7, p<0.01). Also, accuracy was 
substantially higher when the left-most operator was higher-
precedence (85% against 68.5%, F(1, 33) = 48.6, p<0.001). 
Trial alignment also had a main effect on accuracy; aligned 
stimuli were solved most successfully, and inverted trials 
least (70.4%, 76.2%, 83.6%, F(2, 65) = 8.17, p<0.001).  

Despite the overall benefit of alignment, evidence can 
also be found for at least some types of familiarity.  
Participants in both the aligned and inverted conditions, 
were more accurate on trials which were familiar (i.e., that 
followed the spacing convention of the training phase) than 
those which were not. According to individual within-
participants t-tests, participants in the aligned condition 
were substantially more accurate on aligned stimuli 
(t(15)=2.7, p<0.05).  Despite the general advantage of 
aligned stimuli, participants in the inverted condition were 
marginally more accurate on familiar (inverted) stimuli  
than novel stimuli (t(7)=2.28, p=0.057)  Participants in the 
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Figure 1: Mean accuracy in the unsupported stage vs. trial type for each of the three conditions, when the higher-order operator 

was on the left (left) and on the right (right).  Generally, accuracy is higher when the high-order operator appeared on the left, and 
higher when the trial type matched the training condition.  



random condition showed no benefit for familiar stimuli 
(t(9)=0.8, p>0.4). 

Discussion 
Spacing regularities informed syntactic judgments in this 
experiment, but only when that spacing aligns with common 
mathematical practice by placing higher-order operands 
together. Non-formal correspondences—even though they 
were highly salient and 100% valid—did not help 
participants determine order of precedence over no 
information when that correspondence violated the usual 
convention that closer spacing accompanies higher 
precedence. In contrast, participants learned the correct 
order much more quickly when it was aligned with a spatial 
correspondence. By and large, this evidence supports the 
hypothesis that the availability of a visual structure as a cue 
is mediated by the relationship between the structure and the 
formal structure it is aligned with. However, during the 
unsupported phase consistency was most helpful to 
participants in the consistent condition. This interaction 
suggests that participants did not just depend blindly on 
alignment, but accommodated to the local regularities to 
some degree.  

Participants in the aligned condition took more trials than 
those in the random or inverted to master the same language 
once visual support was removed, indicating that to some 
degree these participants are using visual support as a 
crutch. However, in this case the crutch clearly supported 
eventual independent learning, since substantially more 
participants eventually learned the rule in the consistent 
condition.  

The results demonstrate that the alignment between 
syntactic structure and spacing orthography is not restricted 
to the familiar mathematical operations, but is a general part 
of how people engage with mathematical structures 
structures. Although stimuli with familiar spacings may be 
easier to process than unfamiliar ones, this effect cannot 
explain the general alignment advantage shown here. 

Possible sources of the alignment advantage 
Unfortunately, one of the most interesting aspects of the 
alignment advantage is not addressed by this experiment: 
where does it come from? There are three plausible answers 
to this question. First, the alignment advantage seen in this 
experiment may well be a result of far transfer from the 
usual statistics of the familiar mathematical domain. In turn, 
spacing conventions in mathematics may be learned in each 
individual, and the biases seen in other studies (Kirshner, 
1989; Landy & Goldstone, in press B) may result simply 
from that learning. This statistical account is in a certain 
sense unsatisfying: it might just as well have been the other 
way, that wider gaps would imply higher-order operations, 
had the orthographic choices of the original symbolic 
mathematicians been different. Being unsatisfying of course 
does not make this account less plausible. Another 
possibility is that the alignment of space and syntax tells us 
something deep about the mechanisms of learning formal 

syntax. It might be that formal syntax is, in some way, 
derived from the mechanisms that perform perceptual 
groups, in the same way that temporal language and 
judgments seem to be metaphorically derived from spatial 
judgments (Boroditsky, 2000). In this account, the observed 
alignment advantage is a trace of methods through which 
learners came to understand syntax. In skilled reasoners, 
however, syntax is processed using formal rule systems. 

A final hypothesis is that the mechanisms used to process 
syntax are not, entirely, the symbolic mechanisms used to 
learn truly unsupported formal symbol systems, but are 
rooted in perceptual-motor systems that use visual cues to 
engage with mathematical texts as scenes. For instance, it 
may be that skilled mathematical reasoners pick out and 
attend first to closely spaced items, rather than reading 
equations from left to right. In helpfully spaced equations, 
such a process would obviate the need to represent a parse 
derived from operator order; in an unhelpfully constructed 
system, such as our inverted condition, this mechanism 
would backfire. What is interesting about this explanation is 
that it is not rooted in a statistical observation or belief 
(“Close items ought to bind more tightly”), but in a 
plausible computational practice. The apparent belief falls 
out of the way people engage with formal texts.  

Sfard & Linchevski (1994) discuss the historical 
explosion of mathematics that accompanied the creation of 
modern symbolic algebra in the 15th century (previously, 
algebraic forms were written out in sentences as algorithms 
(Cajori, 1927)). Sfard & Linchevski suggest that one of the 
advantages of formal notations is that they allow users to 
treat as objects what seem to be processes. For instance, 
they suggest that it is easier to engage with “a + b*c” than 
“b multiplied by c, with the result added to a” as a thing. 
This perspective accords naturally with the process-oriented 
account of the previous paragraph. In this account, natural 
visual parsing cues are used to divide expressions up into 
their (visual) parts; these parts are treated as things, and 
similarly subdivided. As long as the visual segments align 
with the syntactic ones, object segmentation systems will 
automatically generate correct formal parsings (see also 
Endress, Scholl & Mehler, 2005).  

The experiments presented here do not resolve the source 
of the alignment advantage. Dissociating the effects of 
experience with aligned notations, derivation of syntactic 
structure from spacing, and process-driven advantages for 
alignment will require future research. Regardless of the 
source of the advantage, the presence of a general 
relationship between syntactic structure and spacing has 
some general implications for both cognitive science and 
mathematical education.  
 
Possible implications of the alignment advantage  

People integrate spatial information implicit in the visual 
presentation of formal notations. Furthermore, this 
integration supports correct formal practice, when 
orthographic practices align with syntactic hierarchies. 
Thus, we suggest that visual and non-formal processes are 



substantially responsible for successful behavior in formal 
reasoning where such information is available. We do not 
think this is a radical, or even a very surprising conclusion, 
but it stands in stark contrast to extant claims that physical 
relationships other than concatenation are irrelevant to 
expression interpretation (Chandrasekaran, 2006; Stenning, 
2002), or that such physical relationships are damaging and 
should be removed or attention to them discouraged 
(Iverson, 1980; Kirshner & Awtry, 2004). This suggestion is 
also incompatible with the standard practice of formal 
arithmetic modeling, which tends to ignore aspects of vision 
beyond basic symbol detection (e.g., Anderson, 2005), and 
of studies in mathematical cognition, which typically do not 
even report the spacing of presented stimuli (Koedinger & 
Nathan, 2004; Butterworth et al, 2001). The main 
implication of this work is that small variations in how 
formal terms are laid out on a page have large effects on 
how those terms are used by reasoners. 

A second implication is that designers of novel languages 
would be well-served by a consideration of the general 
alignment of non-formal and formal regularities implicit in 
their systems. Kirshner & Awtry (2004) recommend that, 
because using visual similarity as a guide to formal 
arithmetic is sometimes misleading, students should be 
discouraged from using them at all. We feel, though, that the 
fault lies in our systems, not in ourselves. Systems that align 
these properties are likely to be substantially easier to learn 
and use than systems which do not. 

Finally, this research has implications for cognitive 
scientists interested in abstract pattern learning. The explicit 
goal of many such researchers is to explore a fundamental 
abstract capacity to learn rule-governed systems (e.g., 
Marcus, 2001). Such research is valid and interesting, but it 
may be that the role of such systems for learning abstract 
patterns is not as large as has been assumed. Although 
genuinely abstract formal systems without perceptual cues 
may possibly be designed, the processes people use to 
successfully master real formal systems extend well beyond 
pure symbolic reasoning. 
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