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ABSTRACT

Everyday, people flexibly perform different categorizations of common faces, objects

and scenes.  Intuition and scattered evidence suggest that these categorizations require

the use of different visual information from the input.   However, there is no unifying

method, based on the categorization performance of subjects, that can isolate the

information used.  To this end, we developed Bubbles, a general technique that can

assign the credit of human categorization performance to specific visual information.  To

illustrate the technique, we applied Bubbles on three categorization tasks (gender,

expressive or not and identity) on the same set of faces, with human and ideal observers

to compare the features they used.
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Even casual observers would have no problem to classify the two faces of Figure

1.  They would say that the face in Figure 1a is a woman, with a happy expression, who

is called “Anne,” if this was her identity.  In contrast, Figure 1b is a man, called “Simon,”

with a neutral expression, and who is comparatively older.  These different judgements

of similar images reveal the impressive versatility of face categorization mechanisms

(e.g., Etcoff & Maggee, 1992; Calder et al., 1996; Schyns & Oliva, 1999).  That is, observers

can make subtle judgments of gender, identity, age and expression, based on the same

visual input.

Versatile categorizations are not restricted to faces.  People can typically classify

a given object as a car, at the basic-level, a vehicle at the superordinate level, and as a

Porsche at the subordinate level, when they know this expert categorization (Rosch et al.,

1976). In a related vein, one scene can be an outdoor scene, a city, or New York, depending

on the level of category precision (Oliva & Schyns, 2000).  Flexible categorizations of

objects and scenes at different levels of abstraction have become central to modern

theories of categorization and recognition (Cutzu & Edelman, 1998; Gauthier et al., 2000;

Gosselin & Schyns, 1997; Murphy & Lassaline, 1997; Schyns, 1998; Tarr & Bülthoff, 1995).

INSERT FIGURE 1 AROUND HERE

Such flexible categorizations tend to require different visual information from the

same input.  For example, the information presented in Figure 2 (EXNEX and Human

observer) is sufficient to determine whether the underlying face is expressive or not.

However, could you as confidently determine its gender? Figure 2 (GENDER and

Human observer) reveals supplementary face information that should improve a gender

judgement (i.e., male).

Even though we might have many good intuitions (but fewer data) about the

information required for different visual categorizations, there is a need in recognition

studies for a principled method that reveals the stimulus information that is diagnostic
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of a given categorization task.  To this end, we introduce Bubbles, a general technique

that can assign the credit of a categorization performance to specific visual information.

We will illustrate several properties of Bubbles with three experiments on face

stimuli. Starting from one set of male and female faces displaying two expressions

(neutral and happy), in Experiment 1 Bubbles will isolate the spatial location of the visual

cues that are responsible for the gender and expressive categorizations (Figure 2,

Human observer, is the outcome of this experiment).  The second experiment will

investigate the more challenging task of face identity.  It will also illustrate the generality

of Bubbles by localizing diganostic cues in a larger dimensional (3D) space (2D spatial

location x spatial scales).  In these two experiments, we will contrast the information

human used to the optimal information available to resolve the tasks. Experiment 3 will

seek to validate, in a typical recognition experiment, that the identity cues extracted in

Experiment 2 have a general validity.

From the outset, it is important to emphasize that the aim of this paper is to

illustrate the fundamental principles of Bubbles in the context of simple, but nevertheless

challenging experiments, not to resolve face gender, expression, and identity in optimal

conditions of ecological validity.  Moreover, we used faces because they are good stimuli

for our illustrations, but the principles of Bubbles should generalize to other objects and

scenes.

EXPERIMENT 1

Method.

All experiments reported in this paper ran on a Macintosh G4 using a program

written with the Psychophysics Toolbox for Matlab (Brainard, 1997;  Pelli, 1997).

Participants were five paid University of Glasgow students, with normal, or corrected to

normal vision.  In a within-subjects design, each participant was sequentially submitted

to two independent tasks (male vs. female, GENDER; and expressive or not, EXNEX) on

the same stimulus set.  Order of task changed randomly across participants.
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Stimuli were computed from the 32 greyscale faces of Schyns and Oliva (1999) (8

males, 8 females, each displaying either a neutral or happy expression, with normalized

hairstyle, global orientation and lighting, see Figure 1).  Each face was partly revealed by

a mid-grey mask punctured by a number of randomly located Gaussian windows

(henceforth called “bubbles”) with standard deviation of .22 deg of visual angle, see

Figure 3c for examples.  We chose bubbles with a Gaussian shape because the Gaussian

distribution is smooth and symmetrical (see Marr, 1982).

During the experiment, the number of bubbles per image was automatically

adjusted, using an adaptive procedure, to reveal just enough face information to

maintain a 75% correct categorization criterion (Bubbles is a self-calibrating technique).

The size of the bubbles and the self-calibration are important aspects of the technique

that we discuss in the results section, once we have illustrated the basic computations.

INSERT FIGURE 2 AROUND HERE

In a given trial, one sparse face computed as described above appeared on the

screen.  To respond, subjects pressed labelled computer-keyboard keys.  It is important

to stress that subjects were not under any time pressure to respond and so could freely

explore the stimulus.  The experiment comprised a total of 512 trials (16 presentations of

the 32 faces).  A chinrest was used to maintain a constant viewing distance of 100 cm.

Stimuli subtended 5.72 x 5.72 deg of visual angle on the screen.

Results.

An average of 15 and 23 bubbles (standard deviation = 4 and 9), respectively, in

the EXNEX and the GENDER conditions, was required for subjects to reach the

performance criteria.  A correct response meant that the bubbles (or a subset of them)

revealed enough face information to correctly categorize the sparse face.  When this

happened, we added the mask made of bubbles to CorrectPlane.  Across trials,

CorrectPlane sums all the masks leading to successful categorizations (see Figure 3a and

3c).  We also added the successful masks to TotalPlane.  Across trials, TotalPlane sums
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all the masks leading to a successful categorization and all the masks leading to a

miscategorization (see Figure 3b).

Remember that the location of all bubbles in a mask changes randomly across

trials.  They randomly reveal a portion of the tested space (here, the image plane) to an

observer who must then use this information for a categorization.  Hence, the interaction

between the random bubbles and the observer can be depicted as a random search for

diagnostic task information.  With enough trials, a random search is exhaustive and all

the search space is explored.

For each subject, we derived a ProportionPlane by dividing CorrectPlane by

TotalPlane.  We then computed the mean ProportionPlane of GENDER and EXNEX by

averaging across subjects.  The averaged ProportionPlane is a measure of the relative

importance of the regions of the 2D image for the task at hand.  If no region had any

special status, ProportionPlane would be homogeneously grey.  That is, the probability

that the information revealed by any bubble led to a correct categorization would be .75,

the performance criterion.  In contrast, the more diagnostic regions should be

significantly above the criterion (i.e. whiter).  Figure 3d illustrates the ProportionPlane of

EXNEX.  Note the salient region corresponding to the mouth.

INSERT FIGURE 3 AROUND HERE

To derive the statistical significance of diagnostic regions, we construct around

the mean of the ProportionPlane a confidence interval for each proportion  (p < .05).  The

DiagnosticPlane is a task-specific mask that removes all information below the

confidence interval.  The DiagnosticPlanes in Figure 2 were smoothed out with a

Gaussian bubble identical to the experimental bubble.

This simple experiment has demonstrated that two distinct categorizations of the

same faces do indeed require different visual information.  Figure 2, Human observer,

reveals that the mouth is the only diagnostic region of EXNEX, however, the eyes and

the center of the mouth are used in GENDER.
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At this stage, it is worth expanding on the dynamics of the technique.  We stated

earlier that Bubbles was a self-calibrating technique.  In fact, Bubbles is a gradient-descent

algorithm (Hertz, Krogh & Palmer, 1991) that constantly adjusts the number of bubbles

(i.e., the total face area revealed) to minimize an error term–the difference between

subject and target performance.  This self-calibration has one important side-effect with

regards the size of bubbles.  Simply put, if subjects require information represented at a

scale larger than that of a bubble, the technique will recalibrate and automatically

increase the number of bubbles.  Consequently, the density of bubbles will increase, they

will start to form clusters at larger scales, subjects’ performance will improve, and this

will in turn stabilize the number of bubbles.  This self-calibration implies that Bubbles is

relatively insensitive to the size of the bubbles.  For example, all the images of Figures 2

illustrate that the diagnostic masks are much larger than the size of the small bubbles.

Human vs. Ideal Observer

In Bubbles, the observer determines the informative subset of a randomly, and

sparsely sampled search space.  To highlight this unique property, we here contrast

human and ideal observers (Tjan, Braje, Legge & Kersten, 1987).  The ideal observer will

provide a benchmark of the information available in the stimulus set to resolve each

task.  In the tasks of Experiment 1, the ideal will capture all the regions of the image that

have highest local variance between the considered categories (male vs. female, and

neutral vs. expressive).  This ideal considers the stimuli as images (not faces composed

of eyes, a nose and  a mouth, as humans do) and it might not necessarily be sensitive to

the regions that humans find most useful (the diagnostic regions), but to the information

that is mostly available in the data set for the task at hand.

We constructed a different ideal observer for EXNEX and GENDER and

submitted them to Bubbles, using the same parameters as those humans used in

Experiment 1. Specifically, the number of bubbles was held constant (equal to the

average numbers humans required in EXNEX and GENDER, respectively), and we
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added to the faces a varying percentage of white noise to maintain performance at 75%

correct.  In a Winner-Take-All algorithm (Hertz et al., 1991), the ideal matched the

information revealed by the bubbles of the input with the same bubbles applied to the 32

memorized face pictures. The gender or expression of the best match was the

categorization response. CorrectPlanes, TotalPlanes, ProportionPlanes and

DiagnosticPlanes were computed as explained before.

Figure 2 shows that the DiagnosticPlanes of the ideal and human observers are

only partially correlated (r = .75 and .55 for the EXNEX and GENDER DiagnosticPlanes,

respectively).  For GENDER, human and ideal observers use similar information (e.g.,

the eyes and the central upper part of the mouth).  However, the ideal also uses

supplementary information from the silhouette of the head.  Similarly, for EXNEX, the

human and ideal observers both use information around the mouth.  However, the ideal

also uses lateralized information from the eyes.

In sum, the ideal and human observers revealed that the EXNEX and GENDER

tasks require different information from the same face set.  The partial correlation

between human and ideal use of information demonstrates the unique property of

Bubbles:  it is a human, partially efficient, not a formal, optimally efficient, feature

extraction algorithm.

EXPERIMENT 2

Experiment 2 applies Bubbles to the more challenging task of face identity.  We

want to demonstrate that the technique is versatile and can be applied to a more

complex, abstract “image generation” space.  Bubbles will here search a 3D space

comprising the two dimensions of the image plane and the third abstract dimension of

spatial scales.

It is now well established that the identity of faces is represented at multiple

spatial scales (see Morrison & Schyns, in press, for a review).  However, research on face

recognition has so far lacked a technique that identifies the specific aspects of identity
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that humans locally represent at different scales.  Experiment 2 applies Bubbles to a

simple face identification task.

Method.

This application of Bubbles is very similar to that of Experiment 1.  Participants

were twenty paid University of Glasgow students, with normal, or corrected to normal

vision.  Stimuli were computed from 10 of the greyscale faces (5 males and 5 females all

displaying a neutral expression) used in Experiment 1 (see Figure 4a).  Prior to

experimentation, all subjects learned to criterion (perfect identification of all faces twice

in a row) the name attached to each face from printed pictures with corresponding name

at the bottom.

To compute the experimental stimuli, we decomposed the original faces into 6

bands of spatial frequencies of one octave each—at 2.81, 5.62, 11.25, 22.5, 45 and 90

cycles per face, from coarse to fine, respectively (computations were made with the

Matlab Pyramid Toolbox, Simoncelli, 1997).  The coarsest band served as a constant

background, as a prior study revealed that it does not contain face identification

information (see Figure 4b).  We applied different Gaussian windows to each one of the

five spatial frequency bands, to normalize to 3 the number of cycles per face that any

bubble revealed (standard deviations of bubbles were 2.15, 1.08, .54, .27, and .13 deg of

visual angle, from coarse to fine scales, see Figure 4c). Pilot testing revealed that 3 cycles

per bubble was the smallest integer choice leading to naturalistic sparse faces.

The multiplication of scale-specific face information (Figure 4b) with its

respective bubbles (Figure 4c) produced the information revealed at each scale (Figure

4d).  To generate an experimental stimulus, we simply added the information revealed

at each scale (Figure 4e).  As in Experiment 1, the total subspace revealed by the bubbles

was self-calibrated to maintain identification of the sparse faces at a 75% correct

criterion.

INSERT FIGURE 4 AROUND HERE
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In a given trial, one sparse face appeared on the screen.  Subjects identified it by

pressing the keyboard-key tagged with the appropriate name.  To allow for complete

inspection of the revealed information, subjects were under no time pressure to respond.

The experiment comprised two sessions of 500 trials each (50 presentations of the 10

faces), but we only used the data of the last 500 trials, when subjects were really familiar

with the faces and experimental procedure. A chinrest was used to maintain subjects at a

constant viewing distance (of 100 cm).  Stimuli subtended 5.72 x 5.72 deg of visual angle

on the screen.

Results.

On average of 47 bubbles (standard deviation = 16) were needed for subjects to

reach the performance criterion. The correct identification of a sparse stimulus indicates

that the bubbles used in its construction (or a subset of them) revealed enough

information about the face for its identification.  In Experiment 2, this information can

reside at different scales of the same stimulus.  To compute CorrectPlane, we must

memorize the locations of the bubbles at each scale (i.e., all those of Figure 4c).  To this

end, we recorded an independent CorrectPlane for each scale—henceforth called

CorrectPlane(scale), with scale = 1 to 5.  A similar argument applies to

TotalPlane—henceforth, TotalPlane(scale), with scale = 1 to 5.  Whenever a stimulus was

correctly identified, its bubbles were added to their respective CorrectPlane(scale) and

TotalPlane(scale).  When the input was misidentified, bubbles were only added to

TotalPlane(scale).

To derive diagnostic information, we computed a different ProportionPlane for

each scale by dividing CorrectPlane(scale) by TotalPlane(scale), for each subject.  We

then averaged ProportionPlane(scale).  The result enables a much finer analysis of

information than that of Experiment 1: ProportionPlane(scale) weighs the importance of

the regions of each scale for face identification.  To derive the DiagnosticPlane(scale), we

constructed a confidence interval (p < .05) around the mean of each
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ProportionPlane(scale), for each proportion. Figure 5c reveals the diagnostic regions of

face identification at different scales.

INSERT FIGURE 5 AROUND HERE

It is interesting to step back from the computations to observe the interaction

between spatial scales and information use.  To do this, we multiply the scale

information of Figure 5b with the diagnostic masks of Figure 5c to derive Figure 5d.  At

the finest scale, the eyes and a corner of the mouth appear to stand out (see the leftmost

picture in Figure 5d).  At the next to finest scale, the diagnostic information is a mask

comprising the eyes, the nose and the mouth.  The next scale is consistent with the

information that face recognition researchers would call a configural representation of

the face. Together, the eyes, the nose, the mouth and the chin appear to form a

meaningful recognition unit, but in isolation, these features do not diagnose the identity

of the face (Gauthier & Tarr, 1997; Schyns & Oliva, 1999; Sergent, 1986; Tanaka &

Sengco, 1997).  At the next meaningful scale, the left side of the face silhouette is used. It

is worth pointing out that the lighting was always coming from the right side of the

faces.  Therefore, the left sides of the face were more shaded and thus more informative,

see below.  This is also apparent in the third diagnostic plane.

To visualize the diagnostic information of a face identification task, we can now

reconstruct the “effective face.”  The effective face (Figure 5e) is the sum of the face

information revealed by the diagnostic filters in Figure 5d.

Human vs. Ideal performance

To compare the human vs. ideal features of face identity, we ran an ideal observer

similar to those of Experiment 1. The ideal was exposed to faces punctured with bubbled

masks at different scales (the number of bubbles per scale was normalized to the average

number humans needed) and correlated the sparse face with the pictures in memory.

The best match constituted the categorization response.  Performance was maintained at

75% correct by adding a varying percentage of white noise to the input face.
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CorrectPlanes, TotalPlanes, ProportionPlanes and DiagnosticPlanes were computed as

explained before.  Figure 6 illustrates the ideal diagnostic masks.

INSERT FIGURE 6 AROUND HERE

As in Experiment 1, the diagnostic masks of the human observers were only

partially correlated with those of the ideal (r = 1, .48, .12, .01, and .05, from coarse to fine

scales), revealing again the specific human contribution to the feature extraction process.

EXPERIMENT 3

Bubbles is a technique that presents sparse stimuli to determine the diagnostic

visual information of categorization tasks.  This information takes the form of diagnostic

masks whose general validity we now turn to.  Two separate issues must be addressed.

The first one stems from the way that sparse stimuli reveal visual information (ie., via

bubbles).  Subjects could adopt an atypical recognition strategy elicited by the presence

of local information.  In a related vein, stimuli were displayed on the screen for an

unlimited time, and this might also have elicited atypical strategies (when compared to

typical recognition experiments that restrict presentation time).  Consequently, the

information revealed by the diagnostic masks might not be used in more typical

situations of face recognition (i.e, when face information is complete, not sparse, and

briefly, not indefinitely presented).

To address this issue, Experiment 3 was set up as a typical recognition task.

Subjects had to identify faces presented on the screen for brief, varying durations.  Each

face could come in one of three possible versions: Original, filtered with Diagnostic

masks, and filtered with Nondiagnostic masks (Figure 7;  nondiagnostic masks are

simply the complement of the diagnostic masks).  The masks would be validated if

recognition performance was similar for the original faces and for those filtered with

diagnostic masks, and was hindered for faces filtered with nondiagnostic masks.

The second issue of validation concerns the restricted number of faces used in

Experiment 2 to derive the masks.  With few faces, the masks might be idiosyncratic to
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this stimulus set, instead of capturing a more generic information about face identity.  If

the masks were idiosyncratic then they would not transfer to a new set of faces.  That is,

they would not reveal the identity information of the new faces.  To address this issue,

we also ran the recognition task described above on a new set of 10 faces (from Gold,

Bennett & Sekuler, 1999a, 1999b).  If the masks revealed generic identity information, we

expected a transfer of recognition performance.  That is, we expected recognition

performance to be similar with the “new,” and the “old” face sets, although the

diagnostic masks were derived from only the “old” face set.

Method.

Participants were 20 paid University of Glasgow students, with normal, or

corrected to normal vision.  They were randomly split between the conditions of OLD

and NEW face sets.

For each face set, we computed three versions of each greyscale face: original

(ORIGINAL), filtered with diagnostic masks (DIAGNOSTIC), and filtered with non-

diagnostic masks (NONDIAGNOSTIC, see Figure 7).  The computation of the

DIAGNOSTIC faces was already presented in Figure 5.  By definition of a diagnostic

mask, its complement (1 – DiagnosticMask(scale), for scale = 1 to 5) reveals the less

diagnostic information. NONDIAGNOSTIC faces were filtered with these nondiagnostic

masks.  For each face and scale, we then normalized contrast energy across conditions of

ORIGINAL, DIAGNOSTIC and NONDIAGNOSTIC.

INSERT FIGURE 7 AROUND HERE

In a given trial, one face (either ORIGINAL, DIAGNOSTIC or NONDIAGNOSTIC)

appeared on the screen for a varying duration (either 13, 27, 53, 107, or 213 ms).  This

was immediately followed by a white noise mask that remained on the screen until

subjects responded.  Subjects identified the face by pressing the keyboard-key tagged

with the appropriate name.  In total, there were 450 such trials (10 faces x 3 types of

stimuli x 5 durations x 3 repetitions = 450 trials). A chinrest was used to maintain
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subjects at a constant viewing distance (of 100 cm).  Stimuli subtended 5.72 x 5.72 deg of

visual angle on the screen.

Results.

To measure recognition performance, we computed the average percent correct

identification per subject for each of the five presentation times (13, 27, 53, 107, and 213

ms), in the three conditions of face stimulus (ORIGINAL, DIAGNOSTIC and

NONDIAGNOSTIC).  This was done for the two conditions of face sets (OLD and

NEW). The recognition curves are plotted in Figure 8, bestfitted with Weibull

distributions (smallest R2 = .88).

INSERT FIGURE 8 AROUND HERE

As expected, for both the OLD and NEW face sets, performance with the

ORIGINAL and DIAGNOSTIC faces evolved similarly, whereas performance was

hindered with NONDIAGNOSTIC faces. Remember that the first goal of Experiment 3

was to use a typical time constrained face identification experiment to validate the

diagnostic masks which were extracted in conditions of sparse stimulation and

unlimited stimulus presentation.  The similarity of performance between ORIGINAL

and DIAGNOSTIC in contrast to NONDIAGNOSTIC faces validates that the

information revealed by the diagnostic masks does drive the process of recognizing full

faces under time pressure.  When this information was removed in the

NONDIAGNOSTIC condition, subjects’ performance was significantly hindered across

all durations.  Note that DIAGNOSTIC faces were consistently better recognized than

the ORIGINAL faces.  This was expected because the energy normalization reduced the

strength of the DIAGNOSTIC subspace of the ORIGINAL image.  If people must use the

diagnostic information, the ORIGINAL stimulus was then less effective than the

DIAGNOSTIC stimulus.

A comparison between the three curves for OLD and NEW faces sets reveal that

the evolution of performance was very similar, but scaled down for the NEW set.  This
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probably occurred because the NEW faces were more similar (subjects took more time to

learn them).  The comparison between OLD and NEW suggests that the masks captured

generic information about face identity, not only the idiosyncrasies of the OLD face set.

In sum, Experiment 3 was designed to validate the generality of the diagnostic

masks derived by Bubbles in conditions of a restricted stimulus set, sparsely presented,

for an unlimited duration.  In a recognition experiment where full faces were presented

under time pressure, we found similar performance for the original faces and those

filtered by the diagnostic masks.  Moreover, we found a degradation of performance

with nondiagnostically filtered faces. This pattern was replicated on a new set of faces.

Together, the evidence suggests that the masks derived from Bubbles captured generic

information for face identification.

CONCLUDING REMARKS

Experiments 1 and 2 have demonstrated that Bubbles can be used to isolate the

diagnostic information of face recognition tasks.  Experiment 3 validated that the masks

of Experiment 2 captured generic identity information.  Bubbles applied to human and

ideal observers produced different diagnostic masks, and so it is advisable to use a

method based on human performance to derive the features humans use.  Note that the

principles of Bubbles are not limited to faces but are also applicable to other object and

scene categorizations.  The technique is a human search for diagnostic features in any

specified n-dimensional image generation space, even if the space is abstract.
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FIGURE CAPTIONS

Figure 1.  This figure shows two of the faces used in Experiment 1.  Note that hairstyle,

pose and lighting were normalized.

Figure 2.  This figure illustrates diagnostic face information for judging whether a face is

expressive or not (EXNEX), or its gender (GENDER).  The pictures are the outcome of

Bubbles in the EXNEX and GENDER categorizations of Experiment 1 on Human (left

column) and Ideal observers (right column).

Figure 3.  This figure illustrates Bubbles in Experiment 1 for the EXNEX task.  In (a), the

bubbles leading to a correct categorization are added together to form the CorrectPlane

(the rightmost greyscale picture).  In (b), all bubbles (those leading to a correct and

incorrect categorizations) are added to form TotalPlane (the rightmost greyscale

picture).  In (c), examples of experimental stimuli as revealed by the bubbles of (b).  It is

illustrative to judge whether each sparse stimulus is expressive or not. ProportionPlane

(d) is the division of CorrectPlane with TotalPlane.  (Note the whiter mouth area the

greyscale has been renormalized to facilitate interpretation).  See Figure 2 for the

outcome of Experiment 1.

Figure 4.  This figure illustrates the application of Bubbles in Experiment 2.  Pictures in

(b) represent five different scales of (a); (c) illustrate the bubbles applied to each scale;

(d) are the revealed information of (b) by the bubbles of (c).  Note that on this trial there

is no revealed information at the fifth scale.  By integrating the pictures in (d) we obtain

(e), a stimulus subjects actually saw.

Figure 5.   This figure illustrates the outcome of Bubbles in Experiment 2 with human

observers.  Pictures in (b) represent five scales of (a);  (c) represent the statistically

significant diagnostic regions at each spatial scale of the face (see discussion in text);  (d)

multiply (b) with (c).  The bottom picture is the effective (or diagnostic) stimulus:  a

depiction of the information used to identify faces in Experiment 2.
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Figure 6.  This figure illustrates the outcome of Bubbles in Experiment 2 with an ideal

observer.  Pictures in (b) represent five scales of (a);  (c) represent the statistically

significant available regions at each spatial scale of the face;  (d) multiply (b) with (c).

The bottom picture is the available stimulus:  a depiction of the information that is most

informative to identify faces in Experiment 2.

Figure 7.  This figure illustrates the three conditions of Experiment 3:  DIAGNOSTIC is a

filtered version of the ORIGINAL with the diagnostic masks derived in Experiment 2.

NONDIAGNOSTIC is the same face filtered with the complement of the diagnostic

masks (1 – DiagnosticMask(scale), for scale = 1 to 5).  Average energy per scale is

identical in all conditions of a face.

Figure 8.  This figure illustrates the results of Experiment 3.  The curve plots the

proportions of correct responses (with error bars) against presentation time in

DIAGNOSTIC, ORIGINAL, and NONDIAGNOSTIC using the OLD face set, and the

NEW face set (Gold, Bennett & Sekuler, 1999a, b).






